On the McKean–Vlasov equation with infinite mass

Authors

  • M. V. Tantsiura Institute of Mathematics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.08.019

Keywords:

McKean–Vlasov equation, measure-valued processes

Abstract

We consider infinite systems of stochastic differential equations that describe the motion of interacting particles in a random environment. Theorems on existence and uniqueness of the solution are proved. We also obtain a limit theorem for corresponding measure-valued processes in the case where the mass of each particle tends to zero, and the density of particles grows to infinity.

Downloads

Download data is not yet available.

References

Sznitman A.S. Ecole d'Ete de Probabilites de Saint-Flour XIX – 1989, Lecture Notes in Mathematics, Vol. 1464, Berlin: Springer, 1991: 165–251. https://doi.org/10.1007/BFb0085169

McKean H.P. Proc. Nat. Acad. Sci. USA, 1966, 56: 1907–1911. https://doi.org/10.1073/pnas.56.6.1907

Kac M. Proc. Third Berkeley Symp. on Math. Statist. and Prob., Vol. 3, Berkeley: Univ. of Calif. Press, 1956: 171–197.

Dawson D. A. Ecole d'Ete de Probabilites de Saint-Flour XXI – 1991, Lecture Notes in Mathematics, Vol. 1541, Berlin: Springer, 1993: 1–260. https://doi.org/10.1007/BFb0084190

Friedman A. Partial differential equations of parabolic type, Englewood Cliffs, N.J.: Prentice-Hall, 1964.

Veretennikov A. J. Mathematics of the USSR-Sbornik, 1981, 39, No 3: 387–403. https://doi.org/10.1070/SM1981v039n03ABEH001522

Skorokhod A.V. Studies in the theory of random processes, Reading, Mass: Addison-Wesley, 1965.

Published

15.11.2024

How to Cite

Tantsiura, M. V. (2024). On the McKean–Vlasov equation with infinite mass . Reports of the National Academy of Sciences of Ukraine, (8), 19–25. https://doi.org/10.15407/dopovidi2016.08.019