Growth of solutions of fractional differential equations
DOI:
https://doi.org/10.15407/dopovidi2016.08.012Keywords:
differential equation, entire function, fractional derivative, Wiman–Valiron methodAbstract
We prove the existence and uniqueness of a solution of some fractional differential equation. With the aid of the Wiman–Valiron method, the order of growth for the solution is found as well.
Downloads
References
Kilbas A. A., Rivero M., Rodriguez-Germá L., Trujillo J. J. Appl. Math. Comput., 2007, 187: 239–249. https://doi.org/10.1016/j.amc.2006.08.121
Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
Kochubei A. N. Fract. Calc. Appl. Anal., 2009, 12, No 2: 135–158.
Wittich H. Neuere Untersuchungen über eindeutige analytische Funktionen, 2nd ed., Berlin: Springer, 1968. https://doi.org/10.1007/978-3-642-87594-6
Chyzhykov I., Gundersen G. G., Heittokangas J. Proc. London Math. Soc., 2003, 86, Iss. 3: 735–754. https://doi.org/10.1112/S0024611502013965
Laine I. Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter, 1993. https://doi.org/10.1515/9783110863147
Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications, New York: Gordon and Brach, 1993.
Djrbashian M. M. Integral transformations and representations of functions in a complex domain, Moscow: Nauka, 1966 (in Russian).
Sheremeta M. M. Analytic functions of bounded l-index, Mathematical Studies: Monograph Series, Vol. 6, Lviv: VNTL, 1999.
Hayman W. K. Canad. Math. Bull., 1974, 17, No 3: 317–358. https://doi.org/10.4153/CMB-1974-064-0
Chyzhykov I. E., Semochko N.S. Int. J. Appl. Math., 2016, 29, No 1: 19–30. https://doi.org/10.12732/ijam.v29i1.3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.