Homogenized model of diffusion in a locally periodic porous medium with nonlinear absorption at the boundary

Authors

  • M. V. Goncharenko B. I. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine, Kharkiv
  • L. A. Khilkova Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, Rubizhne

DOI:

https://doi.org/10.15407/dopovidi2016.06.015

Keywords:

Homogenization, diffusion, elliptic equation, third boundary condition, locally periodic porous medium, absorption function, conductivity tensor

Abstract

We consider a boundary-value problem describing the process of stationary diffusion in a locally periodic porous medium with nonlinear absorption on the boundary. We study the asymptotic behavior of the solution, when the scale of the microstructure of the medium ε → 0. We have constructed the homogenized equation describing the main term of the asymptotics and deduced explicit formulas for effective characteristics of a medium that are coefficients of this equation.

Downloads

Download data is not yet available.

References

Conca C., Diaz J. I., Li~nan A., Timofte C. Electron. J. Differ. Eq., 2004, No 40: 1–22.

Conca C., Diaz J. I., Li~nan A., Timofte C. New Trends in Continuum Mechanics, Bucharest: Publ. of the Theta Foundation, 2005, Vol. 6: 99–107.

Cioranescu D., Donato P., Zaki R. Asymptotic Anal., 2007, 53: 209–235.

Mel’nyk T. A., Sivak O. A. Ukr. Maht. J., 2009, 61, No 4: 494–512.

Mel’nyk T. A., Sivak O. A. Visn. Kyivs’kogo universutety, 2010, 3: 63–67.

Mel’nyk T. A., Sivak O. A. Asymptotic Anal., 2011, 75: 79–92.

Goncharenko M. V., Khilkova L. A. Ukr. Maht. J., 2015, 67, No 9: 1201–1216 (in Russian).

Cabarrubias B., Donato P. Carpathian J. Math., 2011, 27, No 2: 173–184.

Marchenko V. A., Khruslov Е.Ya. Homogenized models of micro-inhomogeneous media, Kiev: Naukova Dumka, 2005 (in Russian).

Published

03.11.2024

How to Cite

Goncharenko, M. V., & Khilkova, L. A. (2024). Homogenized model of diffusion in a locally periodic porous medium with nonlinear absorption at the boundary. Reports of the National Academy of Sciences of Ukraine, (6), 15–19. https://doi.org/10.15407/dopovidi2016.06.015