Біомагнетизм і біогенні магнітні наночастинки
DOI:
https://doi.org/10.15407/visn2015.07.053Ключові слова:
градієнтна магнітна сила, ефективна магнітна сприйнятливість, магнітне захоплення, генетичний механізм біомінералізаціїАнотація
У статті проаналізовано єдиний генетичний механізм біомінералізації біогенних магнітних наночастинок (нанокристалів магнетиту, маггеміту та грейгіту) в одно- та багатоклітинних організмах і обговорено їх функції як природних сильних магнітів.
Посилання
Pavlovich N.V. Magnitnaya vospriimchivost’ organizmov. (Minsk: Nauka i tekhnika, 1985). P. 111.
Gorobets Y.I., Gorobets O.Y. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field. Progress in Biophysics and Molecular Biology. 2015. 117(1): 125–28. http://doi.org/10.1016/j.pbiomolbio.2014.06.001
Sakaguchi T., Burgess J.G., Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993. 365: 47–49. http://doi.org/10.1038/365047a0
Diebel C.E., Proksch R., Green C.R. Magnetite defines a vertebrate magnetoreceptor. Nature. 2000. 406: 299–302. http://doi.org/10.1038/35018561
Ritz T., Thalau P., Phillips J.B. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature. 2004. 429: 177–79. http://doi.org/10.1038/nature02534
Mann S., Sparks N.H.C., Frankel R.B. Biomineralization of ferromagnetic greigite (Fe3S4) and pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990. 343(18): 258–61. http://doi.org/10.1038/343258a0
Gordon, L.M., Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 2011. 469: 194–97. http://doi.org/10.1038/nature09686
Baker R.R., Mather J.G., Kennaugh J.H. Magnetic bones in human sinuses. Nature. 1983. 301: 78–80. http://doi.org/10.1038/301078a0
Blakemore R.P. Magnetotactic bacteria. Science. 1975. 190: 377–79. http://doi.org/10.1126/science.170679
Frankel R., Blakemore R.P., Wolfe R.S. Magnetite in freshwater magnetotactic bacteria. Science. 1979. 203: 1355–56. http://doi.org/10.1126/science.203.4387.1355
Walcott C., Gould J.L., Kirschvink J.L. Pigeons have magnets. Science. 1979. 184: 180–82. http://doi.org/10.1126/science.184.4133.180
Zoeger J., Dunn J.R., Fuller M. Magnetic material in the head of the common Pacific dolphin. Science. 1981. 213(4510): 892–94. http://doi.org/10.1126/science.7256282
Chan C.S., De Stasio G., Welch S.A. Microbial polysaccharides template assembly of nanocrystal fibers. Science. 2004. 303: 1656–58. http://doi.org/10.1126/science.1092098
Mandernack K.W., Bazylinski D.A., Shanks W.C. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science. 1999. 285: 1892– 96. http://doi.org/10.1126/science.285.5435.1892
Dunin-Borkowski R.E., McCartney M.R., Frankel R.B., Bazylinski D.A., Posfai M., Buseck P.R. Magnetic Microstructure of Magnetotactic Bacteria by Electron Holography. Science. 1998. 282(5395): 1868–70. http://doi.org/10.1126/science.282.5395.1868
Richter M., Kube M., Bazylinski D.A. Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function. J. Bacteriol. 2007. 189(13): 4899–910. http://doi.org/10.1128/JB.00119-07
Schübbe S., Würdemann C., Peplies J. Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 2006. 72(9): 5757–65. http://doi.org/10.1128/AEM.00201-06
Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biology of the Cell. 2002. 94: 29–35. http://doi.org/10.1016/S0248-4900(02)01179-6
Vainshtein M.B., Suzina N.E., Sorokin V.V. A new type of magnet-sensitive inclusions in cells of photosynthetic purple bacteria. System. Appl. Microbiol. 1997. 20: 182–86. http://doi.org/10.1016/S0723-2020(97)80064-1
Bazylinski D.A., Frankel R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004. 2: 217–30. http://doi.org/10.1038/nrmicro842
Kuterbach D.A., Walcott B. Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology. J. Exp. Biol. 1986. 126: 375–87.
Bharde A., Rautaray D., Sarkar I., Sastry M. Extracellular biosynthesis of magnetite using fungi. Small. 2006. 2: 135–41. http://doi.org/10.1002/smll.200500180
Mann S., Sparks N.H.C., Walker M.M. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 1988. 140: 35–49.
Grassi-Schultheiss P.P., Heller F., Dobson J. Analysis of magnetic material in the human heart, spleen and liver. BioMetals. 1997. 10: 351–55. http://doi.org/10.1023/A:1018340920329
Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. Magnetite biomineralization in the human brain. PNAS. 1992. 89: 7683–87. http://doi.org/10.1073/pnas.89.16.7683
Brem F., Hirt A.M., Winklhofer M. Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue. J. R. Soc. Interface. 2006. 3: 833–41. http://doi.org/10.1098/rsif.2006.0133
Kirschvink J.L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: An Update and Recommendations for Future Study. Bioelectromagnetics. 1989. 10(3): 239–59. http://doi.org/10.1002/bem.2250100304
Ritz T., Dommer D.H., Phillips J.B. Shedding Light on Vertebrate Magnetoreception. Neuron. 2002. 34: 503–06. http://doi.org/10.1016/S0896-6273(02)00707-9
Cranfield C.G., Dawe A., Karloukovski V., Dunin-Borkowski R.E., de Pomerai D., Dobson J. Biogenic magnetite in the nematode Caenorhabditis elegans. Proc. R. Soc. Lond. B. 2004. 271(6): 436–39. http://doi.org/10.1098/rsbl.2004.0209
Kirschvink J.L. Ferromagnetic crystals (magnetite?) in human tissue. J. Exp. Biol. 1981. 92(1): 333–35.
Alekseeva T.A., Gorobets S.V., Gorobets O.Yu., Demyanenko I.V., Lazarenko O.M. Medychni perspektyvy. 2014. 19(1): 4–10 [in Ukrainian].
Holland R.A., Kirschvink J.L., Doak T.G., Wikelski M. Bats Use Magnetite to Detect the Earth’s Magnetic Field. PloS ONE. 2008. doi: 10.1371/journal.pone.0001676. http://doi.org/10.1371/journal.pone.0001676
Eder S.H.K., Cadiou H., Muhamad A., McNaughton P.A., Kirschvink J.L, Winklhofer M. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. PNAS. 2012. 109(30): 12022–27. http://doi.org/10.1073/pnas.1205653109
de Oliveira J.F., Wajnberg E., Esquivel D.M., Weinkauf S., Winklhofer M., Hanzlik M. Ant antennae: are they sites for magnetoreception. J. R. Soc. Interface. 2010. 7: 143–52. http://doi.org/10.1098/rsif.2009.0102
Kirschvink J.L., Jones D.S., MacFadden B.J. Magnetite Biomineralization and Magnetoreception in Organisms: a new biomagnetism. (Plenum Publishing Corporation, 1985). P. 682. http://doi.org/10.1007/978-1-4613-0313-8
Schultheiss-Grassi P.P., Dobson J. Magnetic analysis of human brain tissue. BioMetals. 1999. 12: 67–72. http://doi.org/10.1023/A:1009271111083
Ullrich S., Kube M., Schübbe S. Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. J. Bacteriol. 2005. 187(21): 7176–84. http://doi.org/10.1128/JB.187.21.7176-7184.2005
Abreu F., Cantão M.E., Nicolás M.F. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME Journal. 2011. 5: 1634–40. http://doi.org/10.1038/ismej.2011.35
Gorobets Yu.I., Gorobets S.V. Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field. Bulletin of Kherson State Technical University. 2000. 3(9): 276–81.
Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. In: Dekker Encyclopedia of Nanoscience and Nanotechnology (3rd Edition). (New York: CRC Press, 2014). P. 300–308.
Gorobets O.Yu., Gorobets S.V., Gorobets Yu.I. Naukovi visti NTUU «KPI». 2013. 3: 28–33 [in Ukrainian].
Gorobets S.V., Gorobets O.Yu. Functions of biogenic magnetic nanoparticles in organisms. Functional Materials. 2012. 19: 18–26.
Ullrich S., Katzmann E., Borg S. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization. PLoS ONE. 2011. 6(10).
Komeili A., Vali H., Beveridge T.J. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. PNAS. 2004. 101(11): 3839–44. http://doi.org/10.1073/pnas.0400391101
Murat D., Quinlan A., Vali H. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. PNAS. 2010. 107: 5593–98. http://doi.org/10.1073/pnas.0914439107
Nakazawa H., Arakaki A., Narita-Yamada S. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res. 2009. 19: 1801–08. http://doi.org/10.1101/gr.088906.108
Sakaguchi T., Arakaki A., Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 2002. 52: 215–21. http://doi.org/10.1099/00207713-52-1-215
Rioux J.-B., Philippe N., Pereira S. Second Actin-Like MamK Protein in Magnetospirillum magneticum AMB-1 Encoded Outside the Genomic Magnetosome Island. PLoS ONE. 2010. 5(2): 151–60. http://doi.org/10.1371/journal.pone.0009151
Scheffel A., Gärdes A., Grünberg K. The Major Magnetosome Proteins MamGFDC Are Not Essential for Magnetite Biomineralization in Magnetospirillum gryphiswaldense but Regulate the Size of Magnetosome Crystals. J. Bacteriol. 2008. 190(1): 377–86. http://doi.org/10.1128/JB.01371-07
Taylor A.P., Barry J.C. Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J. Microsc. 2004. 213(2): 180–97. http://doi.org/10.1111/j.1365-2818.2004.01287.x
Lins U., Farina M. Amorphous mineral phases in magnetotactic multicellular aggregates. Arch. Microbiol. 2001. 176: 323–28. http://doi.org/10.1007/s002030100328
Byrne M.E., Ball D.A., Guerquin-Kern J.-L. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. PNAS. 2010. 107(27): 12263–68. http://doi.org/10.1073/pnas.1001290107
Gorobets O.Yu., Gorobets S.V., Sorokina L.V. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Functional Materials. 2014. 4: 15–21.
Yan L., Zhang S., Chen P., Liu H., Yin H., Li H. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 2012. 167(9): 507–19. http://doi.org/10.1016/j.micres.2012.04.002
Biello D. Scientific American. 2009. http: www.scientificamerican.com/article/origin-of-oxygen-in-atmosphere/.
Gorobets S.V. Gorobets O.Yu., Demyanenko I.V. Naukovi visti NTUU «KPI». 2013. 3: 34–41 [in Ukrainian].
Kobayashi A., Yamamoto N., Kirschvink J. Study of inorganic crystalline solids in biosystems-magnetite in the human body. J. Soc. Powder and Powder Metall. 1996. 43(11): 1354–60. http://doi.org/10.2497/jjspm.43.1354
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett. 2001. 496(1): 1–5. http://doi.org/10.1016/S0014-5793(01)02386-9
Quintana C., Bellefqih S., Laval J.Y., Guerquin-Kern J.L., Wu T.D., Avila J., Ferrer I., Arranz R., Patino C. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology. 2006. 153: 42–54. http://doi.org/10.1016/j.jsb.2005.11.001
Winklhofer M., Petersen N. Paleomagnetism and Magnetic Bacteria. (Springer-Verlag, 2007). P. 255–273. http://doi.org/10.1007/7171_046
Gorobets S.V., Gorobets O.Yu., Butenko K.O., Chyzh Yu.M. Medychni perspektyvy. 2014. 19(2): 4 [in Ukrainian].
Gorobets S.V., Gorobets O.Yu., Chyzh Yu.M., Sivenok D.V. Magnetic dipole interaction of endogenous magnetic nanoparticles with magnetoliposomes for targeted drug delivery. Biophysics. 2013. 58(3): 379–84. http://doi.org/10.1134/S000635091303007X
Hautot D., Pankhurst Q.A., Morris C.M., Curtis A., Burn J., Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxides in the basal ganglia of neuroferritinopathy patients. Biochim. Biophys. Acta. 2007. 1772: 21–25.
Dunin-Borkowski R.E., McCartney M.R., Posfai M., Frankel R.B., Bazylinski D.A., Buseck P.R. Off-axis electron holography of magnetotactic bacteria:magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 2001. 13: 671–84. http://doi.org/10.1127/0935-1221/2001/0013-0671
Gorobets O.Yu., Gorobets Yu.I., Bondar I.A. Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball. J. Magn. Magn. Mater. 2013. 330: 76–80. http://doi.org/10.1016/j.jmmm.2012.10.015
Gorobets Yu. I., Gorobets S.V. Formation of stationary flows of liquid in vicinity of ferromagnetic packing in constant magnetic field. Magnetohydrodynamics. 2000. 36: 75–78.
Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P. Movement of electrolyte at metal etching and deposition under a non-uniform steady magnetic field. Magnetohydrodynamics. 2014. 50(3): 317–32.
Gorobets O.Yu., Gorobets Yu.I., Rospotniuk V.P., Legenkiy Yu.A. Electric cell voltage at the etching and deposition of metals under an inhomogeneous constant magnetic field. Condensed Matter Physics. 2014. 17: 1–18. http://doi.org/10.5488/CMP.17.43401
Ilchenko M.Yu., Gorobets O.Yu., Bondar I.A. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid. J. Magn. Magn. Mater. 2010. 322: 2075–80. http://doi.org/10.1016/j.jmmm.2010.01.037
Gorobets S.V., Gorobets O.Yu., Brukva O.M. Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field. Appl. Surf. Sci. 2005. 252 2): 448–54.
Gorobets S.V., Gorobets O.Yu., Mazur S.P., Slusar A.A. Influence of a steady magnetic field to a steel surface in the presence of an electrolyte. Phys. Status Solidi C. 2004. 1(12): 3686–88. http://doi.org/10.1002/pssc.200405561
Gorobets O.Yu., Gorobets V.Yu., Derecha D.O., Brukva O.M. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C. 2008. 112(9): 3373–75. http://doi.org/10.1021/jp0762572
Zhu K., Pan H., Li J. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res. Microbiol. 2010. 161: 276–83. http://doi.org/10.1016/j.resmic.2010.02.003
Frankel R.B., Bazylinski D.A. Structure and function of magnetosomes in magnetotactic bacteria. Biomimetics. Design and Processing of Materials. 1995. http://works.bepress.com/rfrankel/159.
Ruan J., Kato T., Santini C.-L. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. PNAS. 2012. 109(50): 20643–48. http://doi.org/10.1073/pnas.1215274109
Friedlaender F.J., Gerber R., Kurz W. Particle Motion Near and Capture on Single Spheres in HGMS. IEEE Trans. Magn. 1981. 17(6): 2801–03. http://doi.org/10.1109/TMAG.1981.1061683
Bazylinski D.A. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol. 1999. 2: 71–80.
Grygorev I.S., Meylikhov E.Z. Fizicheskiye velichiny Spravochnik. (Moscow: Energoatomizdat, 1991).
Bazilynski D.A., Frankel R.B., Heywood B.R. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Appl. Environ. Microbiol. 1995. 61(9): 3232–39.
Ganshin V.M., Labas Yu.A., Zinkevich E.P. Sensornyye sistemy. 2010. 24: 74–93 [in Russian].
Kajimura M., Fukuda R., Bateman R.M. Interactions of Multiple Gas-Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology. Antioxidants & Redox Signalling. 2010. 13(2): 157–92. http://doi.org/10.1089/ars.2009.2657
Cui Y., Ge Z., Rizak J.D. Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure. PLoS ONE. 2012. 147(5). http://doi.org/10.1371/journal.pone.0032196
Kornig A., Dong J., Bennet M., Widdrat M., Andert J., Muller F.D., Schuler D., Klumpp S., Faivre D. Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria. Nano Lett. 2014. 14: 4653–59. http://doi.org/10.1021/nl5017267
Wang X., Liang L. Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1. Bioelectromagnetics. 2009. 30: 313–21. http://doi.org/10.1002/bem.20469
Kobayashi A., Kirschvink J.L., Nash C.Z. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth and Planetary Science Letters. 2006. 245: 538–50. http://doi.org/10.1016/j.epsl.2006.03.041
Patyar S., Joshi R., Byrav D.S., Prakash A., Medhi B, Das B.K. Bacteria in cancer therapy: a novel experimental strategy. J. Biomed. Sci. 2010. 17: 21–30. http://doi.org/10.1186/1423-0127-17-21
Patzak M., Dostalek P., Fogarty R.V., Safarik I., Tobin J.M. Development of magnetic biosorbents for metal uptake. Biotechnol. Tech. 1997. 11(7): 483–87. http://doi.org/10.1023/A:1018453814472
Bush A. Copper, zinc, and the metallobiology of Alzheimer disease. Alz. Dis Assoc. Disord. 2003. 17(3): 147–50. http://doi.org/10.1097/00002093-200307000-00005
Matsunaga T., Suzuki T., Tanaka M., Arakaki A. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 2007. 25(4): 182–88. http://doi.org/10.1016/j.tibtech.2007.02.002