Looking Back the Most Beautiful Molecule C60 after Quarter Century of Discovery
DOI:
https://doi.org/10.15407/visn2012.09.030Keywords:
buckminsterfullerene, formation mechanism, dyadic electronic system, fullerenol polisher, elixirAbstract
On the occasion of silver anniversary of the C60 discovery, the present situation of C60 research is briefly analyzed from three distinct angles: molecule, solid and nanoparticle. With regard to molecular angle, the long pending problem of formation mechanism is almost solved by molecular dynamics approach hinted by Prigogine’s nonequilibrium thermodynamics. The C60 research is at the moment most active in chemistry, and some of the recent results are discussed here. Though C60 is closer to molecule than to the smallest nanoparticle in its outlook, a big future seems hidden in its application in nanotechnology.
References
Kroto H.W., Heath J.R., O’Brien S.C. et al. C60: Buckminsterfullerene. Nature. 1985. 318: 162. http://doi.org/10.1038/318162a0
Krätchmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Solid C60: a new form of carbon. Nature. 1990. 347: 354. http://doi.org/10.1038/347354a0
Haddon R.C., Hebard A.F., Rosseinsky M.J., Murphy D.W., Duclos S.J., Lyons K.B., Miller B., Rosamilia J.M., Fleming R.M., Kortan A.R., Glarum S.H., Makhija A.V., Muller A.J., Eick R.H., Zahurak S.M., Tycko R., Dabbagh G., Thiel F.A. Conducting films of C60 and C70 by alkali-metal doping. Nature. 1991. 350: 320. http://doi.org/10.1038/350320a0
Aldersey-Williams H. The Most Beautiful Molecule: An Adventure in Chemistry. (London: Aurum Press, 1995).
Baggott J. Perfect Symmetry: The Accidental Discovery of Buckminsterfullerene. (Oxford: Oxford University Press, 1994).
Iijima S. Helical microtubules of graphitic carbon. Nature. 1991. 354: 56. http://doi.org/10.1038/354056a0
Irle S., Zheng G., Wang Z., Morokuma K. The C60 formation puzzle «solved»: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B. 2006. 110: 14531. http://doi.org/10.1021/jp061173z
Irle S. et al. Atomistic mechanism of carbon nanostructure self-assembly as predicted by non-equilibrium QM/MD simulations. In: Leszczynski J., Shukla M.K. (eds.). Practical Aspects of Computational Chemistry II. An Overview of the Last Two Decades and Current Trends. (Berlin: Springer – European Academy of Sciences, 2012).
Dunk P.W., Kaiser N.K., Hendrickson C.L., Quinn J.P., Ewels C.P., Nakanishi Y., Sasaki Y., Shinohara H., Marshall A.G., Kroto H.W. Closed network growth of fullerenes. Nature Commun. 2012. 22(3):855. http://doi.org/10.1038/ncomms1853
Brenner D.W., Shenderova O.A., Harrison J.A., Stuart S.J., Ni B., Sinnott S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 2002. 14: 783. http://doi.org/10.1088/0953-8984/14/4/312
Irle S., Zheng G., Elstner M., Morokuma K. From C2 molecules to self-assembled fullerenes in quantum chemical molecular dynamics. Nano Lett. 2003. 3: 1657. http://doi.org/10.1021/nl034739t
Howard J.B. Private communication.
Howard J.B., Kronholm D.F. Fullerenes production technology for large-scale commercial applications. NanoTechnology Forum. (Nov. 5, 2003, Taipei.)
Howard J.B., McKinnon J.T., Makarovsky Y., Lafleur A.L., Johnson M.E. Fullerenes C60 and C70 in flames. Nature. 1991. 352: 139. http://doi.org/10.1038/352139a0
Homann K.-H. Fullerenes and soot formation – new pathways to large particles in flames. Angew. Chem. Int. Ed. 1998. 37: 2434. http://doi.org/10.1002/(SICI)1521-3773(19981002)37:18<2434::AID-ANIE2434>3.0.CO;2-L
Hasobe T., Imahori H., Kamat P.V., Ahn T.K., Kim S.K., Kim D., Fujimoto A., Hirakawa T., Fukuzumi S. Photo-voltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 2005. 127(4): 1216. http://doi.org/10.1021/ja047768u
Imahori H., Umeyama T., Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc. Chem. Res. 2009. 42(11): 1809. http://doi.org/10.1021/ar900034t
Milanesio M.E., Alvarez M.G., Rivarola V., Silber J.J., Durantini E.N. Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochem. Photobiol. 2005. 81: 891. http://doi.org/10.1562/2005-01-24-RA-426R.1
Matsuo Y., Nakamura E. Selective multiaddition of organocopper reagents to fullerenes. Chem. Revs. 2008. 108: 3016. http://doi.org/10.1021/cr0684218
Matsuo Y., Muramatsu A., Kamikawa Y., Kato T., Nakamura E. Synthesis and Structural, Electrochemical, and Stacking Properties of Conical Molecules Possessing Buckyferrocene on the Apex. J. Am. Chem. Soc. 2006. 128(30): 9586. http://doi.org/10.1021/ja062757h
Komatsu K., Murata M., Murata Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science. 2005. 307: 238. http://doi.org/10.1126/science.1106185
Aoyagi S., Nishibori E., Sawa H., Sugimoto K., Takata M., Miyata Y., Kitaura R., Shinohara H., Okada H., Sakai T., Ono Y., Kawachi K., Yokoo K., Ono S., Omote K., Kasama Y., Ishikawa S., Komuro T., Tobita H. A layered ionic crystal of polar Li@C60 superatoms. Nature Chem. 2010. 2(8): 678. http://doi.org/10.1038/nchem.698
Touhara H., Okino F. Fluorinated fullerenes. In: Nakajima T., Žemva B., Tressaud A. (eds.). Advanced Inorganic Fluorides: Synthesis, Characterization and Applications. (Amsterdam: Elsevier, 2000). http://doi.org/10.1016/B978-044472002-3/50018-1
Kokubo K., Matsubayashi K., Tategaki H., Takada H., Oshima T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano. 2008. 2(2): 327. http://doi.org/10.1021/nn700151z
Takaya Y., Tachika H., Hayashi T., Kokubo K., Suzuki K. Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces. CIRP Annals. Manuf. Technol. 2009. 58: 495. http://doi.org/10.1016/j.cirp.2009.03.118
Takaya Y., Kishida H., Hayashi T., Michihata M., Kokubo K. Chemical mechanical polishing of patterned copper wafer surface using water-soluble fullerenol slurry. CIRP Annals. Manuf. Technol. 2011. 60(1): 567. http://doi.org/10.1016/j.cirp.2011.03.068
Tabata Y., Ikada Y. Biological functions of fullerene. Pure Appl. Chem. 1999. 71: 2047. http://doi.org/10.1351/pac199971112047
Baati T., Bourasset F., Gharbi N., Njim L., Abderrabba M., Kerkeni A., Szwarc H., Moussa F. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomater. 2012. 33(19): 4936. http://doi.org/10.1016/j.biomaterials.2012.03.036
Cataldo F., Braun T. The Solubility of C60 Fullerene in Long Chain Fatty Acids Esters. Fullerenes, Nanotubes and Carbon Nanostructures. 2007. 15(5): 331. http://doi.org/10.1080/15363830701512450
Ōsawa E. Formation Mechanism of C60 under Nonequilibrium and Irreversible Conditions – An Annotation. Fullerenes, Nanotubes and Carbon Nanostructures. 2012. 20(4–7): 299. http://doi.org/10.1080/1536383X.2012.655104
Matsushita E. Attempt at extending BCS-like theory to explain fullerene superconductors. Prog. Theor. Phys. 2011. 125(5): 1021. http://doi.org/10.1143/PTP.125.1021
Ōsawa E., Ho D. Nanodiamond and its application to drug delivery. J. Med. Allied Sci. 2012. 2(2): 31.
Ōsawa E. Nanodiamond – an Emerging Nanocarbon Material. In: Soumiya S. (ed.). Handbook of Advanced Ceramics. (Elsevier, 2012).
Barnard A., Sasaki S., Ōsawa E. Statistical modelling of ensembles of nanoparticles: approaches to diversity and polydispersivity. Cryst. Growth & Design. Submitted for publication.