The relationship between the intestinal microbiome and the development of neurodegenerative diseases (review)
DOI:
https://doi.org/10.15407/visn2024.07.077Keywords:
microbiome, dementia, neurodegenerative diseases, Alzheimer's disease, microglia, metabolites, amyloids, probiotics, psychobiotics.Abstract
The review is devoted to the connection of natural human microbiome with the development of neurodegenerative pathology. In recent years, a lot of convincing evidence of the huge potential of the microbiome's effect on various processes of the human body, including behavior and brain biochemistry, has been obtained. Based on these data, experts consider the microbiome as an additional human organ that, actively participating in digestion, management of metabolic processes, maintenance of the integrity of the epithelial barrier, development and strengthening of the immune system and a number of other physiological functions, optimizes the conditions for the normal life of the human body in general. The subtle mechanisms of the development and pathogenesis of various forms of neurodegenerative pathology have not been fully deciphered, but the results of numerous studies indicate the participation of the intestinal microbiome in maintaining brain health, as well as the triggering role of a disturbed "gut — microbiome — brain" axis in the development of neurodegenerative pathology. According to experts, the prevention of microbiome disruption and microbiome restoration using certain types of probiotics and other means of microbiome therapy can become one of the tools for the prevention of neurodegenerative diseases and an important component of complex treatment schemes for patients.
References
Megur A. The Microbiota–Gut–Brain Axis and Alzheimer's Disease. Nutrients. 2021. 13(1): 37. https://doi.org/10.3390/nu13010037
Liu S., Gao J., Zhu M., Liu K., Zhang H-L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology. 2020. 57: 5026—5043. https://doi.org/10.1007/s12035-020-02073-3
Zhuang Z., Yang R., Wang W., Lu Q., Huang T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. Journal of Neuroinflammation. 2020. 17: 288. https://doi.org/10.1186/s12974-020-01961-8
Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Microbiome. Kyiv, 2018 [in Russian].
Shyrobokov V.P., Yankovskyy D.S., Dyment G.S. Microbiome and human aging (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019. 25(4): 245—252.
Long-Smith C., O'Riordan K.J., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2020. 60(1):477—502. https://doi.org/10.1146/annurev-pharmtox-010919-023628
Savidge T.C.. Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria. Front. Cell Neurosci. 2016. 9: 503. https://doi.org/10.3389/fncel.2015.00503
Patel M. The Brain-Gut Axis in Alzheimer’s Disease. Advances in Alzheimer's Disease. 2023. 12: 29—37. https://doi.org/10.4236/aad.2023.123003
Chen M., Xie C.R., Shi Y.Z., Tang T.C., Zheng H.J. Gut microbiota and major depressive disorder: A bidirectional Mendelian randomization. Journal of Affective Disorders. 2022. 316: 187—193. https://doi.org/10.1016/j.jad.2022.08.012
Nandwana V., Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer’s Disease. Cureus. 2021. 13(7): e16503. https://doi.org/10.7759/cureus.16503
Das T.K., Ganesh B.P. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer's disease progression. Gut Microbes. 2023. 15(1): 2206504. https://doi.org/10.1080/19490976.2023.2206504
Arora K., Green M., Prakash S. The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front. Bioeng. Biotechnol. 2020. 8: 537847. https://doi.org/10.3389/fbioe.2020.537847
Alonso R., Pisa D., Fernández-Fernández A.M., Carrasco L. Infection of Fungi and Bacteria in Brain Tissue from Elderly Persons and Patients with Alzheimer’s Disease. Front. Aging Neurosci. 2018. 10: 159. https://doi.org/10.3389/fnagi.2018.00159
Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019. 16: 1—10. https://doi.org/10.1186/s12974-019-1494-4
Liu F., Li J., Wu F., Zheng H., Peng Q., Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry. 2019. 9(1): 43. https://doi.org/10.1038/s41398-019-0389-6
Valles-Colomer M., Falony G., Darzi Y. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019. 4(4): 623—632. https://doi.org/10.1038/s41564-018-0337-x
Weinhard L., di Bartolomei G., Bolasco G., et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 2018. 9: 1228. https://doi.org/10.1038/s41467-018-03566-5
Westfall S., Lomis N., Kahouli I., Dia S.Y., Singh S.P., Prakash S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell Mol. Life Sci. 2017. 74(20): 3769—3787. https://doi.org/10.1007/s00018-017-2550-9
Liu J., Xu Y., Jiang B. Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Front. Cell. Infect. Microbiol. 2021. 11: 586427. https://doi.org/10.3389/fcimb.2021.586427
Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D, Shanahan F., Dinan T.G., Crian J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013. 18: 666—673. https://doi.org/10.1038/mp.2012.77
Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019. 16: 461—478. https://doi.org/10.1038/s41575-019-0157-3
Ho L., Ono K., Tsuji M., Mazzola P., Singh R., Pasinetti G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 2018. 18: 83—90. https://doi.org/10.1080/14737175.2018.1400909
Moțățăianu A., Șerban G., Andone S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023. 24(20): 15094. https://doi.org/10.3390/ijms242015094
Strandwitz P., Kim K.H., Terekhova D. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019. 4(3): 396—403. https://doi.org/10.1038/s41564-018-0307-3
Govindpani K., Calvo-Flores Guzmán B., Vinnakota C., Waldvogel H.J., Faull R.L., Kwakowsky A. Towards a better understanding of GABAergic remodeling in Alzheimer’s disease. Int. J. Mol. Sci. 2017. 18(8): 1813. https://doi.org/10.3390/ijms18081813
Cattaneo A., Cattane N., Galluzzi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging. 2017. 49: 60—68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019
Finneran D.J., Nash K.R. Neuroinflammation and fractalkine signaling in Alzheimer’s disease. J. Neuroinflamm. 2019. 16: 1—8. https://doi.org/10.1186/s12974-019-1412-9
Ahmad M.H., Fatima M., Mondal A.C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J. Clin. Neurosci. 2019. 59: 6—11. https://doi.org/10.1016/j.jocn.2018.10.034
González-Reyes R.E., Nava-Mesa M.O., Vargas-Sánchez K., Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 2017. 10: 1—20. https://doi.org/10.3389/fnmol.2017.00427
Condello C., Yuan P., Schain A., Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 2015. 6: 6176. https://doi.org/10.1038/ncomms7176
Bagyinszky E., Giau V.V., Shim K., Suk K., An S.S.A., Kim S.Y. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci. 2017. 376: 242—254. https://doi.org/10.1016/j.jns.2017.03.031
Villegas-Llerena C., Phillips A., Garcia-Reitboeck P., Hardy J., Pocock J.M. Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr. Opin. Neurobiol. 2016. 36: 74—81. https://doi.org/10.1016/j.conb.2015.10.004
Bonham L.W., Sirkis D.W., Yokoyama J.S. The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Front. Immunol. 2019. 10: 1170. https://doi.org/10.3389/fimmu.2019.01170
Hong S., Beja-Glasser V.F., Nfonoyim B.M. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016. 352: 712—716. https://doi.org/10.1126/science.aad8373
Thakur S., Dhapola R., Sarma P., Medhi B., Reddy D.H. Inflammation, Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023. 46:1—17. https://doi.org/10.1007/s10753-022-01721-1
Fülling C., Lach G., Bastiaanssen T.F.S., Fouhy F., O’Donovan A.N., Ventura-Silva A.P., Stanton C., Dinan T.G., Cryan J.F. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav. Immun. 2020. 87: 666—678. https://doi.org/10.1016/j.bbi.2020.02.013
Franceschi F., Ojetti V., Candelli M., Covino M., Cardone S. Microbes and Alzheimer’ disease: Lessons from H. pylori and GUT microbiota. Eur. Rev. Med. Pharmacol. Sci. 2019. 23: 426—430. https://doi.org/10.26355/eurrev_201901_16791
Rieder R., Wisniewski P.J., Alderman B.L., Campbell S.C. Microbes and mental health: A review. Brain Behav. Immun. 2017. 66: 9—17. https://doi.org/10.1016/j.bbi.2017.01.016
Cerovic M., Forloni G., Balducci C. Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Front. Aging. Neurosci. 2019. 11: 284. https://doi.org/10.3389/fnagi.2019.00284
Ochoa-Repáraz J., Kasper L.H. The Microbiome and Neurologic Disease: Past and Future of a 2-Way Interaction. Neurother. J. Am. Soc. Exp. Neurother. 2018. 15: 1—4. https://doi.org/10.1007/s13311-018-0604-9
Mehrabadi S., Sadr S.S. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran Biomed. J. 2020. 24: 220–228. https://doi.org/10.29252/ibj.24.4.220
Chang C., Lin C., Lane H.Y. D-glutamate and Gut Microbiota in Alzheimer’s Disease. Int. J. Mol. Sci. 2020. 21: 2676. https://doi.org/10.3390/ijms21082676
Janeiro M.H., Ramírez M.J., Solas M. Dysbiosis and Alzheimer's disease: cause or treatment opportunity? Cell Mol. Neurobiol. 2022. 42(2): 377—387. https://doi.org/10.1007/s10571-020-01024-9
Schirmer M., Garner A., Vlamakis H., Xavier R.J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 2019. 17: 497—511. https://doi.org/10.1038/s41579-019-0213-6
Marizzoni M., Mirabelli P., Mombelli E. et al. A peripheral signature of Alzheimer's disease featuring microbiota-gut-brain axis markers. Alzheimers Res. Ther. 2023. 15(1): 101. https://doi.org/10.1186/s13195-023-01218-5
Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegeneration. PLoS Pathog. 2017. 13: e1006654. https://doi.org/10.1371/journal.ppat.1006654
Gao Q., Wang Y., Wang X. et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging (Albany NY). 2019. 11: 8642—8663. https://doi.org/10.18632/aging.102352
Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., Sartor R.B., McIntyre T.M., Silverstein R.L., Tang W.H.W., DiDonato J.A., Brown J.M., Lusis A.J., Hazen S.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016. 165: 111—124. https://doi.org/10.1016/j.cell.2016.02.011
Kahn M.S., Kranjac D., Alonzo C.A., Haase J.H., Cedillos R.O., McLinden K.A., Boehm G.W., Chumley M.J. Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav. Brain Res. 2012. 229:176—184. https://doi.org/10.1016/j.bbr.2012.01.010
Zhao Y., Cong L., Jaber V., Lukiw W.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol. 2017. 8:1—6. https://doi.org/10.3389/fimmu.2017.01064
Zhan X. Author response: Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2017. 88: 2338. https://doi.org/10.1212/WNL.0000000000004048
Ganesh B.P., Versalovic J. Luminal conversion and immunoregulation by probiotics. Front Pharmacol. 2015. 6: 269. https://doi.org/10.3389/fphar.2015.00269
Parker A., Fonseca S., Carding S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020. 11: 135—157. https://doi.org/10.1080/19490976.2019.1638722
Vardhini D., Suneetha S., Ahmed N. et al. Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: Its implication in leprosy and other neurodegenerative diseases. Infect. Genet. Evol. 2004. 4(1): 21—8. https://doi.org/10.1016/j.meegid.2003.11.001
Choroszy-Król I., Frej-Ma̧drzak M., Hober M., Sarowska J., Jama-Kmiecik A. Infections caused by Chlamydophila pneumoniae. Adv. Clin. Exp. Med. 2014. 23: 123—126. https://doi.org/10.17219/acem/37035
Pisa D., Alonso R., Juarranz A., Rábano A., Carrasco L. Direct visualization of fungal infection in brains from patients with Alzheimer’s disease. J. Alzheimer’s Dis. 2015. 43: 613—624. https://doi.org/10.3233/JAD-141386
Wang X., Sun G., Feng T. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019. 29: 787—803. https://doi.org/10.1038/s41422-019-0216-x
Zenaro E., Piacentino G., Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017. 107: 41—56. https://doi.org/10.1016/j.nbd.2016.07.007
Hoyles L., Snelling T., Umlai U.K., Nicholson J.K., Carding S.R., Glen R.C., McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. 2018. 6: 55. https://doi.org/10.1186/s40168-018-0439-y
Pellegrini C., Antonioli L., Colucci R., Blandizzi C., Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol. 2018. 136: 345—361. https://doi.org/10.1007/s00401-018-1856-5
Emery D.C., Shoemark D.K., Batstone T.E., Waterfall C.M., Coghill J.A., Cerajewska T.L., Davies M., West N.X., Allen S.J. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci. 2017. 9: 195. https://doi.org/10.3389/fnagi.2017.00195
Eimer W.A., Vijaya Kumar D.K., Navalpur Shanmugam N.K. et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron. 2018. 99: 56—63.e53. https://doi.org/10.1016/j.neuron.2018.06.030
Liu C.Y., Wang X., Liu C., Zhang H.L. Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci. 2019. 13: 514. https://doi.org/10.3389/fncel.2019.00514
Alexandrov P., Zhai Y., Li W., Lukiw W. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia Neuropathol. 2019. 57: 211—219. https://doi.org/10.5114/fn.2019.88449
Niraula A., Sheridan J.F., Godbout J.P. Microglia priming with aging and stress. Neuropsychopharmacology. 2017. 42: 318—333. https://doi.org/10.1038/npp.2016.185
Wolozin B., Ivanov P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 2019. 20: 649—666. https://doi.org/10.1038/s41583-019-0222-5
Dobra I., Pankivskyi S., Samsonova A., Pastre D., Hamon L. Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2018. 18: 107. https://doi.org/10.1007/s11910-018-0914-7
Vanderweyde T., Apicco D.J., Youmans-Kidder K. et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016. 15: 1455—1466. https://doi.org/10.1016/j.celrep.2016.04.045
Ambadipudi S., Biernat J., Riedel D., Mandelkow E., Zweckstetter M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat. Commun. 2017. 8: 275. https://doi.org/10.1038/s41467-017-00480-0
Basu M., Courtney S.C., Brinton M.A. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells. PLoS Pathog. 2017. 13: e1006240. https://doi.org/10.1371/journal.ppat.1006240
Cobley J.N., Fiorello M.L., Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018. 15: 490—503. https://doi.org/10.1016/j.redox.2018.01.008
Boccardi V., Murasecco I., Mecocci P. Diabetes drugs in the fight against Alzheimer’s disease. Ageing Res. Rev. 2019. 54: 100936. https://doi.org/10.1016/j.arr.2019.100936
Steen E., Terry B.M., Rivera E.J. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005. 7: 63—80. https://doi.org/10.3233/jad-2005-7107
Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O'Connor G., Grati M., Mittal J., Yan D., Eshraghi A.A., Deo S.K., Daunert S., Liu X.Z. Neurotransmitters: the critical modulators regulating gut-brain axis. J. Cell Physiol. 2017. 232: 2359—2372. https://doi.org/10.1002/jcp.25518
Manyevitch R., Protas M., Scarpiello S. et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): a meta-analysis of CSF markers. Curr. Alzheimer Res. 2018. 15(2): 164—181. https://doi.org/10.2174/1567205014666170921122458
Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: a novel class of psychotropic. Biol. Psych. 2013. 74: 720—726. https://doi.org/10.1016/j.biopsych.2013.05.001
Clarke G., Mckernan D.P., Gaszner G., Quigley E.M., Cryan J.F., Dinan T.G. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol. 2012. 3. https://doi.org/10.3389/fphar.2012.00090
O'sullivan E., Barrett E., Grenham S. et al. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Benef. Microbes. 2011. 2: 199—207. https://doi.org/10.3920/BM2011.0015
Sun J., Ling Z., Wang F., Chen W., Li H., Jin J., Zhang H., Pang M., Yu J., Liu J. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via antioxidation and anti-apoptosis. Neurosci. Lett. 2016. 613: 30—35. https://doi.org/10.1016/j.neulet.2015.12.047
Abraham D., Feher J., Scuderi G.L., Szabo D., Dobolyi A., Cservenak M., Juhasz J., Ligeti B., Pongor S., Gomez-Cabrera M.C., Vina J., Higuchi M., Suzuki K., Boldogh I., Radak Z. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome. Exp. Gerontol. 2019. 115: 122—131. https://doi.org/10.1016/j.exger.2018.12.005
Yang X., Yu D., Xue L., Li H., Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B. 2020. 10: 475—487. https://doi.org/10.1016/j.apsb.2019.07.001
Rezaei Asl Z., Sepehri G., Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav. Brain Res. 2019. 376: 112183. https://doi.org/10.1016/j.bbr.2019.112183
Bonfili L., Cecarini V., Berardi S. et al. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 2017. 7: 2426. https://doi.org/10.1038/s41598-017-02587-2
Zhang M., Zhao D., Zhou G., Li C. Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. J. Agric. Food Chem. 2020. 68(46): 12800—12809. https://doi.org/10.1021/acs.jafc.9b08309
Kobayashi Y., Sugahara H., Shimada K. et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 2017. 7: 13510. https://doi.org/10.1038/s41598-017-13368-2
Lee E.H., Kim G.H., Park H.K., Kang H.J., Park Y.K., Lee H.A., Hong C.H., Moon S.Y., Kang W., Oh H.S., Yoon H.J., Choi S.H., Jeong J.H. Effects of the multidomain intervention with nutritional supplements on cognition and gut microbiome in early symptomatic Alzheimer's disease: a randomized controlled trial. Front Aging. Neurosci. 2023. 15: 1266955. https://doi.org/10.3389/fnagi.2023.1266955
Athari Nik Azm S., Djazayeri A., Safa M., Azami K., Ahmadvand B., Sabbaghziarani F., Sharifzadeh M., Vafa M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab. 2018. 43: 718—726. https://doi.org/10.1139/apnm-2017-0648
Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., Guyonnet D., Legrain-Raspaud S., Trotin B., Naliboff B., Mayer E.A. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013. 144(7): 1394—1401. https://doi.org/10.1053/j.gastro.2013.02.043
Akbari E., Asemi Z., Kakhaki R.D., Bahmani F., Kouchaki E., Tamtaji O.R., Hamidi G.A., Salami M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging. Neurosci. 2016. 8: 256. https://doi.org/10.3389/fnagi.2016.00256
Leblhuber F., Steiner K., Schuetz B., Fuchs D., Gostner J.M. Probiotic Supplementation in Patients with Alzheimer’s Dementia—An Explorative Intervention Study. Curr. Alzheimer Res. 2018. 15: 1106–1113. https://doi.org/10.2174/1389200219666180813144834.
Sotoudegan F., Daniali M., Hassani S., Nikfar S., Abdollahi M. Reappraisal of probiotics safety in human. Food Chem. Toxicol. 2019. 129: 22—29. https://doi.org/10.1016/j.fct.2019.04.032
McNulty N.P., Yatsunenko T., Hsiao A. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 2011. 3: 106ra106. https://doi.org/10.1126/scitranslmed.3002701
Suez J., Zmora N., Segal E., Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019. 25: 716—729. https://doi.org/10.1038/s41591-019-0439-x
Míguez B., Gómez B., Parajó J.C., Alonso J.L. Potential of Fructooligosaccharides and xylooligosaccharides as substrates to counteract the undesirable effects of several antibiotics on elder fecal microbiota: a first in vitro approach. J. Agric. Food Chem. 2018. 66: 9426–9437. https://doi.org/10.1021/acs.jafc.8b02940
Schokker D., Fledderus J., Jansen R., Vastenhouw S.A., de Bree F.M., Smits M.A., Jansman A.A.J.M. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development. J. Anim. Sci. 2018. 96: 2139–2153. https://doi.org/10.1093/jas/sky110
Chen D., Yang X., Yang J., Lai G., Yong T., Tang X., Shuai O., Zhou G., Xie Y., Wu Q. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci. 2017. 9: 403. https://doi.org/10.3389/fnagi.2017.00403
Sun J., Liu S., Ling Z., Wang F., Ling Y., Gong T., Fang N., Ye S., Si J., Liu J. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J. Agric. Food Chem. 2019. 67: 3006—3017. https://doi.org/10.1021/acs.jafc.8b07313
Shokryazdan P., Faseleh Jahromi M., Navidshad B., Liang J.B. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 2017. 206:1—9. https://doi.org/10.1007/s00430-016-0481-y
