The relationship between the intestinal microbiome and the development of neurodegenerative diseases (review)

Authors

  • Volodymyr P. Shyrobokov Bogomolets National Medical University, Kyiv, Ukraine https://orcid.org/0000-0002-7474-5895
  • Galyna S. Dyment Scientific-Production Company “OD Prolisok”, Kyiv, Ukraine

DOI:

https://doi.org/10.15407/visn2024.07.077

Keywords:

microbiome, dementia, neurodegenerative diseases, Alzheimer's disease, microglia, metabolites, amyloids, probiotics, psychobiotics.

Abstract

The review is devoted to the connection of natural human microbiome with the development of neurodegenerative pathology. In recent years, a lot of convincing evidence of the huge potential of the microbiome's effect on various processes of the human body, including behavior and brain biochemistry, has been obtained. Based on these data, experts consider the microbiome as an additional human organ that, actively participating in digestion, management of metabolic processes, maintenance of the integrity of the epithelial barrier, development and strengthening of the immune system and a number of other physiological functions, optimizes the conditions for the normal life of the human body in general. The subtle mechanisms of the development and pathogenesis of various forms of neurodegenerative pathology have not been fully deciphered, but the results of numerous studies indicate the participation of the intestinal microbiome in maintaining brain health, as well as the triggering role of a disturbed "gut — microbiome — brain" axis in the development of neurodegenerative pathology. According to experts, the prevention of microbiome disruption and microbiome restoration using certain types of probiotics and other means of microbiome therapy can become one of the tools for the prevention of neurodegenerative diseases and an important component of complex treatment schemes for patients.

References

Megur A. The Microbiota–Gut–Brain Axis and Alzheimer's Disease. Nutrients. 2021. 13(1): 37. https://doi.org/10.3390/nu13010037

Liu S., Gao J., Zhu M., Liu K., Zhang H-L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology. 2020. 57: 5026—5043. https://doi.org/10.1007/s12035-020-02073-3

Zhuang Z., Yang R., Wang W., Lu Q., Huang T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. Journal of Neuroinflammation. 2020. 17: 288. https://doi.org/10.1186/s12974-020-01961-8

Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Microbiome. Kyiv, 2018 [in Russian].

Shyrobokov V.P., Yankovskyy D.S., Dyment G.S. Microbiome and human aging (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019. 25(4): 245—252.

Long-Smith C., O'Riordan K.J., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2020. 60(1):477—502. https://doi.org/10.1146/annurev-pharmtox-010919-023628

Savidge T.C.. Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria. Front. Cell Neurosci. 2016. 9: 503. https://doi.org/10.3389/fncel.2015.00503

Patel M. The Brain-Gut Axis in Alzheimer’s Disease. Advances in Alzheimer's Disease. 2023. 12: 29—37. https://doi.org/10.4236/aad.2023.123003

Chen M., Xie C.R., Shi Y.Z., Tang T.C., Zheng H.J. Gut microbiota and major depressive disorder: A bidirectional Mendelian randomization. Journal of Affective Disorders. 2022. 316: 187—193. https://doi.org/10.1016/j.jad.2022.08.012

Nandwana V., Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer’s Disease. Cureus. 2021. 13(7): e16503. https://doi.org/10.7759/cureus.16503

Das T.K., Ganesh B.P. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer's disease progression. Gut Microbes. 2023. 15(1): 2206504. https://doi.org/10.1080/19490976.2023.2206504

Arora K., Green M., Prakash S. The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front. Bioeng. Biotechnol. 2020. 8: 537847. https://doi.org/10.3389/fbioe.2020.537847

Alonso R., Pisa D., Fernández-Fernández A.M., Carrasco L. Infection of Fungi and Bacteria in Brain Tissue from Elderly Persons and Patients with Alzheimer’s Disease. Front. Aging Neurosci. 2018. 10: 159. https://doi.org/10.3389/fnagi.2018.00159

Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019. 16: 1—10. https://doi.org/10.1186/s12974-019-1494-4

Liu F., Li J., Wu F., Zheng H., Peng Q., Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry. 2019. 9(1): 43. https://doi.org/10.1038/s41398-019-0389-6

Valles-Colomer M., Falony G., Darzi Y. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019. 4(4): 623—632. https://doi.org/10.1038/s41564-018-0337-x

Weinhard L., di Bartolomei G., Bolasco G., et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 2018. 9: 1228. https://doi.org/10.1038/s41467-018-03566-5

Westfall S., Lomis N., Kahouli I., Dia S.Y., Singh S.P., Prakash S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell Mol. Life Sci. 2017. 74(20): 3769—3787. https://doi.org/10.1007/s00018-017-2550-9

Liu J., Xu Y., Jiang B. Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Front. Cell. Infect. Microbiol. 2021. 11: 586427. https://doi.org/10.3389/fcimb.2021.586427

Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D, Shanahan F., Dinan T.G., Crian J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013. 18: 666—673. https://doi.org/10.1038/mp.2012.77

Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019. 16: 461—478. https://doi.org/10.1038/s41575-019-0157-3

Ho L., Ono K., Tsuji M., Mazzola P., Singh R., Pasinetti G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 2018. 18: 83—90. https://doi.org/10.1080/14737175.2018.1400909

Moțățăianu A., Șerban G., Andone S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023. 24(20): 15094. https://doi.org/10.3390/ijms242015094

Strandwitz P., Kim K.H., Terekhova D. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019. 4(3): 396—403. https://doi.org/10.1038/s41564-018-0307-3

Govindpani K., Calvo-Flores Guzmán B., Vinnakota C., Waldvogel H.J., Faull R.L., Kwakowsky A. Towards a better understanding of GABAergic remodeling in Alzheimer’s disease. Int. J. Mol. Sci. 2017. 18(8): 1813. https://doi.org/10.3390/ijms18081813

Cattaneo A., Cattane N., Galluzzi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging. 2017. 49: 60—68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

Finneran D.J., Nash K.R. Neuroinflammation and fractalkine signaling in Alzheimer’s disease. J. Neuroinflamm. 2019. 16: 1—8. https://doi.org/10.1186/s12974-019-1412-9

Ahmad M.H., Fatima M., Mondal A.C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J. Clin. Neurosci. 2019. 59: 6—11. https://doi.org/10.1016/j.jocn.2018.10.034

González-Reyes R.E., Nava-Mesa M.O., Vargas-Sánchez K., Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 2017. 10: 1—20. https://doi.org/10.3389/fnmol.2017.00427

Condello C., Yuan P., Schain A., Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 2015. 6: 6176. https://doi.org/10.1038/ncomms7176

Bagyinszky E., Giau V.V., Shim K., Suk K., An S.S.A., Kim S.Y. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci. 2017. 376: 242—254. https://doi.org/10.1016/j.jns.2017.03.031

Villegas-Llerena C., Phillips A., Garcia-Reitboeck P., Hardy J., Pocock J.M. Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr. Opin. Neurobiol. 2016. 36: 74—81. https://doi.org/10.1016/j.conb.2015.10.004

Bonham L.W., Sirkis D.W., Yokoyama J.S. The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Front. Immunol. 2019. 10: 1170. https://doi.org/10.3389/fimmu.2019.01170

Hong S., Beja-Glasser V.F., Nfonoyim B.M. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016. 352: 712—716. https://doi.org/10.1126/science.aad8373

Thakur S., Dhapola R., Sarma P., Medhi B., Reddy D.H. Inflammation, Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023. 46:1—17. https://doi.org/10.1007/s10753-022-01721-1

Fülling C., Lach G., Bastiaanssen T.F.S., Fouhy F., O’Donovan A.N., Ventura-Silva A.P., Stanton C., Dinan T.G., Cryan J.F. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav. Immun. 2020. 87: 666—678. https://doi.org/10.1016/j.bbi.2020.02.013

Franceschi F., Ojetti V., Candelli M., Covino M., Cardone S. Microbes and Alzheimer’ disease: Lessons from H. pylori and GUT microbiota. Eur. Rev. Med. Pharmacol. Sci. 2019. 23: 426—430. https://doi.org/10.26355/eurrev_201901_16791

Rieder R., Wisniewski P.J., Alderman B.L., Campbell S.C. Microbes and mental health: A review. Brain Behav. Immun. 2017. 66: 9—17. https://doi.org/10.1016/j.bbi.2017.01.016

Cerovic M., Forloni G., Balducci C. Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Front. Aging. Neurosci. 2019. 11: 284. https://doi.org/10.3389/fnagi.2019.00284

Ochoa-Repáraz J., Kasper L.H. The Microbiome and Neurologic Disease: Past and Future of a 2-Way Interaction. Neurother. J. Am. Soc. Exp. Neurother. 2018. 15: 1—4. https://doi.org/10.1007/s13311-018-0604-9

Mehrabadi S., Sadr S.S. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran Biomed. J. 2020. 24: 220–228. https://doi.org/10.29252/ibj.24.4.220

Chang C., Lin C., Lane H.Y. D-glutamate and Gut Microbiota in Alzheimer’s Disease. Int. J. Mol. Sci. 2020. 21: 2676. https://doi.org/10.3390/ijms21082676

Janeiro M.H., Ramírez M.J., Solas M. Dysbiosis and Alzheimer's disease: cause or treatment opportunity? Cell Mol. Neurobiol. 2022. 42(2): 377—387. https://doi.org/10.1007/s10571-020-01024-9

Schirmer M., Garner A., Vlamakis H., Xavier R.J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 2019. 17: 497—511. https://doi.org/10.1038/s41579-019-0213-6

Marizzoni M., Mirabelli P., Mombelli E. et al. A peripheral signature of Alzheimer's disease featuring microbiota-gut-brain axis markers. Alzheimers Res. Ther. 2023. 15(1): 101. https://doi.org/10.1186/s13195-023-01218-5

Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegeneration. PLoS Pathog. 2017. 13: e1006654. https://doi.org/10.1371/journal.ppat.1006654

Gao Q., Wang Y., Wang X. et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging (Albany NY). 2019. 11: 8642—8663. https://doi.org/10.18632/aging.102352

Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., Sartor R.B., McIntyre T.M., Silverstein R.L., Tang W.H.W., DiDonato J.A., Brown J.M., Lusis A.J., Hazen S.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016. 165: 111—124. https://doi.org/10.1016/j.cell.2016.02.011

Kahn M.S., Kranjac D., Alonzo C.A., Haase J.H., Cedillos R.O., McLinden K.A., Boehm G.W., Chumley M.J. Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav. Brain Res. 2012. 229:176—184. https://doi.org/10.1016/j.bbr.2012.01.010

Zhao Y., Cong L., Jaber V., Lukiw W.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol. 2017. 8:1—6. https://doi.org/10.3389/fimmu.2017.01064

Zhan X. Author response: Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2017. 88: 2338. https://doi.org/10.1212/WNL.0000000000004048

Ganesh B.P., Versalovic J. Luminal conversion and immunoregulation by probiotics. Front Pharmacol. 2015. 6: 269. https://doi.org/10.3389/fphar.2015.00269

Parker A., Fonseca S., Carding S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020. 11: 135—157. https://doi.org/10.1080/19490976.2019.1638722

Vardhini D., Suneetha S., Ahmed N. et al. Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: Its implication in leprosy and other neurodegenerative diseases. Infect. Genet. Evol. 2004. 4(1): 21—8. https://doi.org/10.1016/j.meegid.2003.11.001

Choroszy-Król I., Frej-Ma̧drzak M., Hober M., Sarowska J., Jama-Kmiecik A. Infections caused by Chlamydophila pneumoniae. Adv. Clin. Exp. Med. 2014. 23: 123—126. https://doi.org/10.17219/acem/37035

Pisa D., Alonso R., Juarranz A., Rábano A., Carrasco L. Direct visualization of fungal infection in brains from patients with Alzheimer’s disease. J. Alzheimer’s Dis. 2015. 43: 613—624. https://doi.org/10.3233/JAD-141386

Wang X., Sun G., Feng T. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019. 29: 787—803. https://doi.org/10.1038/s41422-019-0216-x

Zenaro E., Piacentino G., Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017. 107: 41—56. https://doi.org/10.1016/j.nbd.2016.07.007

Hoyles L., Snelling T., Umlai U.K., Nicholson J.K., Carding S.R., Glen R.C., McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. 2018. 6: 55. https://doi.org/10.1186/s40168-018-0439-y

Pellegrini C., Antonioli L., Colucci R., Blandizzi C., Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol. 2018. 136: 345—361. https://doi.org/10.1007/s00401-018-1856-5

Emery D.C., Shoemark D.K., Batstone T.E., Waterfall C.M., Coghill J.A., Cerajewska T.L., Davies M., West N.X., Allen S.J. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci. 2017. 9: 195. https://doi.org/10.3389/fnagi.2017.00195

Eimer W.A., Vijaya Kumar D.K., Navalpur Shanmugam N.K. et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron. 2018. 99: 56—63.e53. https://doi.org/10.1016/j.neuron.2018.06.030

Liu C.Y., Wang X., Liu C., Zhang H.L. Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci. 2019. 13: 514. https://doi.org/10.3389/fncel.2019.00514

Alexandrov P., Zhai Y., Li W., Lukiw W. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia Neuropathol. 2019. 57: 211—219. https://doi.org/10.5114/fn.2019.88449

Niraula A., Sheridan J.F., Godbout J.P. Microglia priming with aging and stress. Neuropsychopharmacology. 2017. 42: 318—333. https://doi.org/10.1038/npp.2016.185

Wolozin B., Ivanov P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 2019. 20: 649—666. https://doi.org/10.1038/s41583-019-0222-5

Dobra I., Pankivskyi S., Samsonova A., Pastre D., Hamon L. Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2018. 18: 107. https://doi.org/10.1007/s11910-018-0914-7

Vanderweyde T., Apicco D.J., Youmans-Kidder K. et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016. 15: 1455—1466. https://doi.org/10.1016/j.celrep.2016.04.045

Ambadipudi S., Biernat J., Riedel D., Mandelkow E., Zweckstetter M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat. Commun. 2017. 8: 275. https://doi.org/10.1038/s41467-017-00480-0

Basu M., Courtney S.C., Brinton M.A. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells. PLoS Pathog. 2017. 13: e1006240. https://doi.org/10.1371/journal.ppat.1006240

Cobley J.N., Fiorello M.L., Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018. 15: 490—503. https://doi.org/10.1016/j.redox.2018.01.008

Boccardi V., Murasecco I., Mecocci P. Diabetes drugs in the fight against Alzheimer’s disease. Ageing Res. Rev. 2019. 54: 100936. https://doi.org/10.1016/j.arr.2019.100936

Steen E., Terry B.M., Rivera E.J. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005. 7: 63—80. https://doi.org/10.3233/jad-2005-7107

Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O'Connor G., Grati M., Mittal J., Yan D., Eshraghi A.A., Deo S.K., Daunert S., Liu X.Z. Neurotransmitters: the critical modulators regulating gut-brain axis. J. Cell Physiol. 2017. 232: 2359—2372. https://doi.org/10.1002/jcp.25518

Manyevitch R., Protas M., Scarpiello S. et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): a meta-analysis of CSF markers. Curr. Alzheimer Res. 2018. 15(2): 164—181. https://doi.org/10.2174/1567205014666170921122458

Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: a novel class of psychotropic. Biol. Psych. 2013. 74: 720—726. https://doi.org/10.1016/j.biopsych.2013.05.001

Clarke G., Mckernan D.P., Gaszner G., Quigley E.M., Cryan J.F., Dinan T.G. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol. 2012. 3. https://doi.org/10.3389/fphar.2012.00090

O'sullivan E., Barrett E., Grenham S. et al. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Benef. Microbes. 2011. 2: 199—207. https://doi.org/10.3920/BM2011.0015

Sun J., Ling Z., Wang F., Chen W., Li H., Jin J., Zhang H., Pang M., Yu J., Liu J. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via antioxidation and anti-apoptosis. Neurosci. Lett. 2016. 613: 30—35. https://doi.org/10.1016/j.neulet.2015.12.047

Abraham D., Feher J., Scuderi G.L., Szabo D., Dobolyi A., Cservenak M., Juhasz J., Ligeti B., Pongor S., Gomez-Cabrera M.C., Vina J., Higuchi M., Suzuki K., Boldogh I., Radak Z. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome. Exp. Gerontol. 2019. 115: 122—131. https://doi.org/10.1016/j.exger.2018.12.005

Yang X., Yu D., Xue L., Li H., Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B. 2020. 10: 475—487. https://doi.org/10.1016/j.apsb.2019.07.001

Rezaei Asl Z., Sepehri G., Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav. Brain Res. 2019. 376: 112183. https://doi.org/10.1016/j.bbr.2019.112183

Bonfili L., Cecarini V., Berardi S. et al. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 2017. 7: 2426. https://doi.org/10.1038/s41598-017-02587-2

Zhang M., Zhao D., Zhou G., Li C. Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. J. Agric. Food Chem. 2020. 68(46): 12800—12809. https://doi.org/10.1021/acs.jafc.9b08309

Kobayashi Y., Sugahara H., Shimada K. et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 2017. 7: 13510. https://doi.org/10.1038/s41598-017-13368-2

Lee E.H., Kim G.H., Park H.K., Kang H.J., Park Y.K., Lee H.A., Hong C.H., Moon S.Y., Kang W., Oh H.S., Yoon H.J., Choi S.H., Jeong J.H. Effects of the multidomain intervention with nutritional supplements on cognition and gut microbiome in early symptomatic Alzheimer's disease: a randomized controlled trial. Front Aging. Neurosci. 2023. 15: 1266955. https://doi.org/10.3389/fnagi.2023.1266955

Athari Nik Azm S., Djazayeri A., Safa M., Azami K., Ahmadvand B., Sabbaghziarani F., Sharifzadeh M., Vafa M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab. 2018. 43: 718—726. https://doi.org/10.1139/apnm-2017-0648

Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., Guyonnet D., Legrain-Raspaud S., Trotin B., Naliboff B., Mayer E.A. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013. 144(7): 1394—1401. https://doi.org/10.1053/j.gastro.2013.02.043

Akbari E., Asemi Z., Kakhaki R.D., Bahmani F., Kouchaki E., Tamtaji O.R., Hamidi G.A., Salami M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging. Neurosci. 2016. 8: 256. https://doi.org/10.3389/fnagi.2016.00256

Leblhuber F., Steiner K., Schuetz B., Fuchs D., Gostner J.M. Probiotic Supplementation in Patients with Alzheimer’s Dementia—An Explorative Intervention Study. Curr. Alzheimer Res. 2018. 15: 1106–1113. https://doi.org/10.2174/1389200219666180813144834.

Sotoudegan F., Daniali M., Hassani S., Nikfar S., Abdollahi M. Reappraisal of probiotics safety in human. Food Chem. Toxicol. 2019. 129: 22—29. https://doi.org/10.1016/j.fct.2019.04.032

McNulty N.P., Yatsunenko T., Hsiao A. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 2011. 3: 106ra106. https://doi.org/10.1126/scitranslmed.3002701

Suez J., Zmora N., Segal E., Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019. 25: 716—729. https://doi.org/10.1038/s41591-019-0439-x

Míguez B., Gómez B., Parajó J.C., Alonso J.L. Potential of Fructooligosaccharides and xylooligosaccharides as substrates to counteract the undesirable effects of several antibiotics on elder fecal microbiota: a first in vitro approach. J. Agric. Food Chem. 2018. 66: 9426–9437. https://doi.org/10.1021/acs.jafc.8b02940

Schokker D., Fledderus J., Jansen R., Vastenhouw S.A., de Bree F.M., Smits M.A., Jansman A.A.J.M. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development. J. Anim. Sci. 2018. 96: 2139–2153. https://doi.org/10.1093/jas/sky110

Chen D., Yang X., Yang J., Lai G., Yong T., Tang X., Shuai O., Zhou G., Xie Y., Wu Q. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci. 2017. 9: 403. https://doi.org/10.3389/fnagi.2017.00403

Sun J., Liu S., Ling Z., Wang F., Ling Y., Gong T., Fang N., Ye S., Si J., Liu J. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J. Agric. Food Chem. 2019. 67: 3006—3017. https://doi.org/10.1021/acs.jafc.8b07313

Shokryazdan P., Faseleh Jahromi M., Navidshad B., Liang J.B. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 2017. 206:1—9. https://doi.org/10.1007/s00430-016-0481-y

Published

2024-07-24

How to Cite

Shyrobokov, V. P. ., & Dyment , G. S. . (2024). The relationship between the intestinal microbiome and the development of neurodegenerative diseases (review). Visnik Nacional Noi Academii Nauk Ukrai Ni, (7), 77–94. https://doi.org/10.15407/visn2024.07.077