Functionalization of nanocomposites for alternative energy

According to the scientific report at the meeting of the Presidium of the NAS of Ukraine, March 31, 2021

Authors

DOI:

https://doi.org/10.15407/visn2021.05.054

Keywords:

concentrated solar energy, low-temperature thermionic converters, metal–nanostructured carbon composites

Abstract

The electrical conductive properties of the titanium (Ti) powder - multi-walled carbon nanotubes (MWCNTs) system in the processes of appearance electrical contacts between its components under compression deformations are studied. There is the formation of composites, which is accompanied by an increase in the electrical conductivity of the material more than 5 times compared to the original components when the concentration of MWCNTs approaches 15 wt. %. This effect is due to the transfer of electrons from metal particles to MWCNTs. It is shown that the use of metal–carbon nanostructure composites opens the way to the creation of ‘cold’ cathodes for thermionic energy converters (TECs) that can operate from low-temperature energy sources. The Ti–thermoexpanded graphite (TEG) composite cathode under the irradiation of TEC with concentrated sunlight allowed for the first time to observe voltage and direct current at temperatures of 170–350°C. These values are up to 9 times lower than the operating temperatures of traditional TECs made of refractory metals. Furthermore, the current was observed in a closed electrical circuit without the application of additional external potential difference. Changes in the composite sample surface morphology under the action of concentrated solar radiation at the stage of preliminary annealing of samples at temperatures above 270–310°C play a significant role. During annealing on the metal particles surface of the composite, the carbon nanostructures (from TEG component) are formed in the form of separately located cylindrical outgrowths with a diameter of 20–80 nm, which can provide a significant increase in the contribution from autoelectron emission based on temperature-independent tunneling mechanism. The established mechanisms of current and voltage generation in TECs with composite cathodes allowed formulating the physical principles of ‘cold’ electrodes construction for direct emission converters of concentrated solar energy into electricity.

References

Morgulis N.D. Conversion of thermal energy into electricity with the aid of thermoelectric emission. Soviet Physics Uspekhi. 1960. 3(2): 251–259. DOI: https://doi.org/10.1070/PU1960v003n02ABEH003270

Dobretsov L.N., Gomoyunova M.V. Emission Electronics (Emissionnaya Elektronika). Moscow: Nauka, 1966. (in Rus-sian).

Ponomarev-Stepnoi N.N. Thermoelectric and thermoemissive converters. Soviet Atomic Energy. 1965. 18(4): 494–498. DOI: https://doi.org/10.1007/BF01115972

Ushakov B.A., Nikitin V.D., Yemelianov I.Ya. Basics of Thermionic Energy Conversion (Osnovy Termoemissionnogo Preobrazovaniya Energii). Moscow: Atomizdat, 1974. (in Russian).

Patent of Ukraine No. 5428. Dekhtyar I.Ya., Melnykov M.V., Patoka V.I., Shevchenko M.Ya., Sylantyev V.I., Varaksin B.P., Titkov O.S. Treatment method for electrodes of thermionic electron emitter. 28.12.1994.

Dekhtyar I.Ya., Silantev V.I., Sakharova S.G., Fedchenko R.G., Patoka V.I., Kolesnik V.N. Fermi surface anisotropy and properties of tungsten crystals. Physica Status Solidi. B. 1976. 74(2): 471–476. DOI: https://doi.org/10.1002/pssb.2220740207

Varaksin B.P., Titkov A.S., Silantiev V.I., Shevchenko N.A. Emission and adsorption properties of clean and dirty crystal faces (110) of tungsten and their characterisation as an emitter of TEC. Poverkhnost. 1991. 11: 125.

Bel’skii M.D., Bocharov G.S., Yeletskii A.V., Sommerer T.J. Electric field enhancement in field-emission cathodes based on carbon nanotubes. Technical Physics. 2010. 80(2): 289–295. DOI: https://doi.org/10.1134/S1063784210020210

Nishchenko M.M., Shevchenko M.Ya., Lisunova Yu.O., Dubovoy A.G., Ruban A.P. Electron Emission of Molybdenum (100) under Action of the Concentrated Solar Radiation. Metallofiz. Noveishie Tekhnol. 2007. 29(2): 239–243.

Nishchenko M.M., Patoka V.I., Shevchenko M.Ya., Dubovyy A.G., Anikeev V.V. Emission properties of carbon nanostructure materials. Metallofiz. Noveishie Tekhnol. 2008. 30(7): 913.

Nishchenko M., Shevchenko N., Tsapko E., Frolov G., Sartinskaya L. Emission materials for converting solar energy to electronic. Nano Studies. 2013. (8): 249–254.

Sartinska L.L., Bloschanevich O.M., Timofeeva I.I., Nishchenko M.M., Shevchenko N.A. Emission properties of cath-odes based on B–N–C as a result of laser processing. Journal of Non-Crystalline Solids. 2011. 357(6): 1504–1507. DOI: https://doi.org/10.1016/j.jnoncrysol.2010.12.035

Vasylyev M O., Len E.G., Kolesnik V.M., Makeeva I.M., Patoka V.I., Smolnik S.V. Plasmon Spectroscopy of W (100) Single Crystal Surface. Metallofiz. Noveishie Tekhnol. 2020. 42(4): 471–485. DOI: https://doi.org/10.15407/mfint.42.04.0471

Galstian I.Ye., Len E.G., Tsapko E.A., Mykhaylova H.Yu., Koda V.Yu., Rud M.O., Shevchenko M.Ya., Patoka V.I., Yakymchuk M.M., Frolov G.O. Low-temperature thermionic converters based on metal–nanostructured carbon composites. Metallofiz. Noveishie Tekhnol. 2020. 42(4): 451–470. DOI: https://doi.org/10.15407/mfint.42.04.0451

Mykhaylova H.Yu., Nyshchenko M.M., Dubovoy A.H., Prykhod’ko H.P. Electrical conductivity of the nanocomposite LaNi5 – carbon nanotubes. In: Advanced topics of theoretical, experimental and applied physics (Aktualni problemy te-oretychnoi, eksperymentalnoi ta prykladnoi fizyky): Proc. All-Ukrainian Sci. Conf. (20–22 September 2012, Ternopil, Ukraine). P. 10–11. (in Ukrainian).

Mykhaylova H.Yu., Len E.G., Galstyan I.Ye., Tsapko E.A., Gerasymov O.Yu., Patoka V.I., Sidorchenko I.M., Yakym-chuk M.M., Electrical and mechanical properties of composites Ti–carbon nanotubes. Metallofiz. Noveishie Tekhnol. 2020. 42(4): 575–593. DOI: https://doi.org/10.15407/mfint.42.04.0575

Published

2021-05-24