With symmetry in life and mathematics

To the 75th anniversary of Corresponding Member of NAS of Ukraine A.G. Nikitin

Authors

DOI:

https://doi.org/10.15407/visn2020.12.087

Abstract

December 25 marks the 75th anniversary of the famous Ukrainian specialist in mathematical physics, winner of the State Prize of Ukraine in Science and Technology (2001) and the M.M. Krylov Prize of the NAS of Ukraine (2010), Head of the Department of Mathematical Physics of the Institute of Mathematics of the NAS of Ukraine, Doctor of Physical and Mathematical Sciences (1987), Professor (2001), Corresponding Member of the NAS of Ukraine (2009) Anatoly G. Nikitin.

References

Fushchich W.I., Grishchenko A.L., Nikitin A.G. On relativistic equations of motion without “redundant” components. Theor. Math. Phys. 1971. 8(2): 766–775. DOI: https://doi.org/10.1007/BF01037997

Fushchich W.I., Nikitin A.G. Symmetries of Maxwell’s equations. Dordrecht: D. Reidel, 1987.

Fushchich W.I., Nikitin A.G. Symmetries of equations of quantum mechanics. N.Y.: Allerton Press, 1994.

Nikitin A.G. (ed.) Symmetry and Integrability of Equations of Mathematical Physics (dedicated to the 70th anniversary of Professor W.I. Fushchych). Transactions of Institute of Mathematics of NAS of Ukraine. 2006. 3(2): 5–8. (in Ukrainian). http://trim.imath.kiev.ua/index.php/trim/issue/view/20

Nikitin A.G., Fushchich W.I. Equations of motion for particles of arbitrary spin invariant under the Galilei group. Theor. Math. Phys. 1980. 44(1): 584–592. DOI: https://doi.org/10.1007/BF01038008

Fushchich W.I., Nikitin A.G. Nonrelativistic equations of motion for particles with arbitrary spin. Sov. J. Particles Nucl. 1981. 12: 1157–1219.

de Montigny M., Niederle J. Nikitin A.G. Galilei invariant theories. I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions. J. Phys. A: Math. Gen. 2006. 39(29):9365–9385. https://doi.org/10.1088/0305-4470/39/29/026

Fushchich W.I., Nikitin A.G. Poincare-invariant equations of motion for particles of arbitrary spin. Sov. J. Particles Nucl. 1978. 9: 501–553.

Niederle J., Nikitin A.G. Relativistic wave equations for interacting, massive particles with arbitrary half-integer spins. Phys. Rev. 2001. D 64: 125013–125024. DOI: https://doi.org/10.1103/PhysRevD.64.125013

Niederle J., Nikitin A.G. Relativistic Coulomb problem for particles with arbitrary half-integer spin. J. Phys. A: Math. Gen. 2006. 39(34): 10931–10944. DOI: https://doi.org/10.1088/0305-4470/39/34/023

Fushchich W.I., Nikitin A.G. New invariance algebras of relativistic equations for massless particles. J. Phys. A: Math. Gen. 1979. 12(6): 747–757. https://doi.org/10.1088/0305-4470/12/6/005

Fushchych W.I., Nikitin A.G. The complete set of conservation laws for the electromagnetic field. J. Phys. A: Math. Gen. 1992. 25(5): L231–L233. DOI: https://doi.org/10.1088/0305-4470/25/5/004

Beckers J., Debergh N., Nikitin A.G. On supersymmetries in nonrelativistic quantum mechanics. J. Math. Phys. 1992. 33(1): 152–160. DOI: https://doi.org/10.1063/1.529954

Beckers J., Debergh N., Nikitin A.G. On parasupersymmetries and relativistic description for spin one particles. I. The free particle context. Fort. Phys. 1995. 43(1): 67–80. DOI: https://doi.org/10.1002/prop.2190430104

Beckers J., Debergh N., Nikitin A.G. Reducibility of supersymmetric quantum mechanics. Int. J. Theor. Phys. 1997. 36: 1991–2003. DOI: https://doi.org/10.1007/BF02435955

Nikitin A.G., Wiltshire R.J. Symmetries of systems of nonlinear reaction-diffusion equations. Proc. of Inst. of Mathematics of the Nat. Acad. Sci. of the Ukraine. 2000. 30 (Part 1): 47–59. https://www.imath.kiev.ua/~symmetry/Symmetry99/art4.pdf

Nikitin A.G., Wiltshire R.J. Systems of reaction diffusion equations and their symmetry properties. J. Math. Phys. 2001. 42(4): 1667–1688. DOI: https://doi.org/10.1063/1.1331318

Nikitin A.G. Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginsburg–Landau equations. J. Math. Anal. Appl. 2006. 324(1): 615–628. DOI: https://doi.org/10.1016/j.jmaa.2005.12.022

Nikitin A.G. Group classification of systems of non-linear reaction-diffusion equations with triangular diffusion matrix. Ukr. Math. J. 2007. 59: 395–411. DOI: https://doi.org/10.1007/s11253-007-0028-x

Nikitin A.G., Spichak S.V., Vedula Yu.S., Naumovets A.G. Symmetries and modelling functions for diffusion processes. J. Phys. D: Appl. Phys. 2009. 42(5): 055301. DOI: https://doi.org/10.1088/0022-3727/42/5/055301

Nikitin A.G., Kuriksha O. Symmetries of field equations of axion electrodynamics. Phys. Rev. D. 2012. 86: 025010. DOI: https://doi.org/10.1103/PhysRevD.86.025010

Nikitin A.G., Karadzhov Yu. Matrix superpotentials. J. Phys. A: Math. Theor. 2011. 44(30): 305204. DOI: https://doi.org/10.1088/1751-8113/44/30/305204

Nikitin A.G. Matrix superpotentials and superintegrable systems for arbitrary spin. J. Phys. A: Math. Theor. 2012. 45: 225205. DOI: https://doi.org/10.1088/1751-8113/45/22/225205

Nikitin A.G. Laplace–Runge–Lenz vector for arbitrary spin. 2013. J. Math. Phys. 54: 123506. DOI: https://doi.org/10.1063/1.4843435

Nikitin A.G. New exactly solvable systems with Fock symmetry. J. Phys. A: Math. Theor. 2012. 45: 485204. DOI: https://doi.org/10.1088/1751-8113/45/48/485204

Nikitin A.G. Superintegrability and supersymmetry of Schrödinger–Pauli equations for neutral particles. J. Math. Phys. 2012. 53(12): 122103. DOI: https://doi.org/10.1063/1.4768464

Nikitin A.G. Superintegrable and shape invariant systems with position dependent mass. J. Phys. A: Math. Theor. 2015. 48: 335201. DOI: https://doi.org/10.1088/1751-8113/48/33/335201

Nikitin A.G. Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses. J. Math. Phys. 2017. 58(8): 083508. DOI: https://doi.org/10.1063/1.4986171

Nikitin A.G. Symmetries of Schrödinger equation with scalar and vector potentials. J. Phys. A: Math. Theor. 2020. 53: 455202. DOI: https://doi.org/10.1088/1751-8121/abb956

Published

2023-03-07