Magnetic nanocomposites for advanced technical and medical applications

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, November 30, 2022

Authors

  • Alexandr I. Tovstolytkin Institute of Magnetism of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-4852-6605

DOI:

https://doi.org/10.15407/visn2023.02.043

Keywords:

magnetic nanocomposites, terahertz frequency band, antiferromagnetic ordering, self-controlled magnetic hyperthermia

Abstract

Current trends in the development of devices based on magnetic materials have been outlined. It is emphasized that an important direction is the development and research of advanced nanocomposites, the use of which in such devices will lead to a reduction in size, an increase in speed and an expansion of the functionality of practical applications. It is noted that the research carried out at the Institute of Magnetism of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine is in line with modern world trends. The results of research on composite nanostructures with an antiferromagnetic component are presented. The results of scientific activities aimed at the development and research of magnetic nanomaterials for medicine, in particular for self-controlled magnetic hyperthermia, are highlighted.

Cite this article:
Tovstolytkin A.I. Magnetic nanocomposites for advanced technical and medical applications. Visn. Nac. Akad. Nauk Ukr. 2023. (2): 43—49. https://doi.org/10.15407/visn2023.02.043

References

Coey J.M.D. Magnetism and Magnetic Materials. Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511845000

Raveendran A., Sebastian M.T., Raman S. Applications of Microwave Materials: A Review. J. Electron. Mater. 2019. 48: 2601—2634. https://doi.org/10.1007/s11664-019-07049-1

Gutfleisch O., Willard M.A., Brück E., Chen C.H., Sankar S.G., Liu J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials. 2011. 23(7): 821—842. https://doi.org/10.1002/adma.201002180

Sai Rama B., Paul A.K., Kulkarn S.V. Soft magnetic materials and their applications in transformers. Journal of Magnetism and Magnetic Materials. 2021. 537: 168210. https://doi.org/10.1016/j.jmmm.2021.168210

Chumak A.V. et al. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics. 2022. 58(6): 1—72. https://doi.org/10.1109/TMAG.2022.3149664

Ovcharov R.V., Galkina E.G., Ivanov B.A., Khymyn R.S. Spin Hall Nano-Oscillator Based on an Antiferromagnetic Domain Wall. Phys. Rev. Applied. 2022. 18: 024047. https://doi.org/10.1103/PhysRevApplied.18.024047

Tomasello R., Verba R., Lopez-Dominguez V., Garesci F., Carpentieri M., Di Ventra M., Amiri P.K., Finocchio G. Antiferromagnetic Parametric Resonance Driven by Voltage-Controlled Magnetic Anisotropy. Phys. Rev. Applied. 2022. 17: 034004. https://doi.org/10.1103/PhysRevApplied.17.034004

Afanasiev D., Hortensius J.R., Ivanov B.A., Sasani A., Bousquet E., Blanter Y.M., Mikhaylovskiy R.V., Kimel A.V., Caviglia A.D. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 2021. 20: 607—611. https://doi.org/10.1038/s41563-021-00922-7

Khymyn R., Lisenkov I., Tiberkevich V., Ivanov B.A., Slavin A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 2017. 7: 43705. https://doi.org/10.1038/srep43705

Yu L., Hao L., Meiqiong T., Jiaoqi H., Wei L., Jinying D., Xueping C., Weiling F., Yang Z. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Advances. 2019. 17. https://doi.org/10.1039/C8RA10605C

Papaioannou E.Th., Beigang R. THz spintronic emitters: a review on achievements and future challenges. Nanophotonics. 2020. 10(4): 1243—1257. https://doi.org/10.1515/nanoph-2020-0563

Mittleman D.M. Perspective: Terahertz science and technology. Journal of Applied Physics. 2017. 122: 230901. https://doi.org/10.1063/1.5007683

Maxwell L.R., McGuire T.R. Antiferromagnetic Resonance. Rev. Mod. Phys. 1953. 25(1): 279. https://doi.org/10.1103/RevModPhys.25.279

Boventer I., Simensen H.T., Anane A., Kläui M., Brataas A., Lebrun R. Room-Temperature Antiferromagnetic Resonance and Inverse Spin-Hall Voltage in Canted Antiferromagnets. Phys. Rev. Lett. 2021. 126(18): 187201. https://doi.org/10.1103/PhysRevLett.126.187201

Gomonay H.V., Loktev V.M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B. 2010. 81(14): 144427. https://doi.org/10.1103/PhysRevB.81.144427

Polishchuk D.M., Persson M., Kulyk M.M., Holmgren E., Pasquale G., Korenivski V. Tuning thermo-magnetic properties of dilute-ferromagnet multilayers using RKKY interaction. Appl. Phys. Lett. 2020. 117(2): 022402. https://doi.org/10.1063/5.0014823

Ekholm M., Abrikosov I.A. Structural and magnetic ground-state properties of γ-FeMn alloys from ab initio calculations. Phys. Rev. B. 2011. 84(10): 104423. https://doi.org/10.1103/PhysRevB.84.104423

Merodio P., Ghosh A., Lemonias C., Gautier E., Ebels U., Chshiev M., Béa H., Baltz V., Bailey W.E. Penetration depth and absorption mechanisms of spin currents in Ir20Mn80 and Fe50Mn50 polycrystalline films by ferromagnetic resonance and spin pumping. Appl. Phys. Lett. 2014. 104: 032406. https://doi.org/10.1063/1.4862971

Polishchuk D.M., Polek T.I., Kamra A., Kravets A.F., Tovstolytkin A.I., Brataas A., Korenivski V. Spin relaxation in multilayers with synthetic ferrimagnets. Phys. Rev. B. 2018. 98(14): 144401. https://doi.org/10.1103/PhysRevB.98.144401

Polishchuk D.M., Nakonechna O.I., Lytvynenko Ya.M., Kuncser V., Savina Yu.O., Pashchenko V.O., Kravets A.F., Tovstolytkin A.I., Korenivski V. Temperature and thickness dependent magnetostatic properties of [Fe/Py]/FeMn/Py multilayers. Low Temperature Physics. 2021. 47(6): 483. https://doi.org/10.1063/10.0004971

Nogués J., Sort J., Langlais V., Skumryev V., Suriñach S., Muñoz J.S., Baró M.D. Exchange bias in nanostructures. Physics Reports. 2005. 422(3): 65—117. https://doi.org/10.1016/j.physrep.2005.08.004

Polishchuk D.M., Tykhonenko-Polishchuk Yu.O., Lytvynenko Ya.M., Rostas A.M., Gomonay O.V., Korenivski V. Thermal Gating of Magnon Exchange in Magnetic Multilayers with Antiferromagnetic Spacers. Phys. Rev. Lett. 2021. 126(22): 227203. https://doi.org/10.1103/PhysRevLett.126.227203

Polishchuk D.M., Polek T.I., Borynskyi V.Yu., Kravets A.F., Tovstolytkin A.I., Korenivski V. Isotropic FMR frequency enhancement in thin Py/FeMn bilayers under strong magnetic proximity effect. J. Phys. D: Appl. Phys. 2021. 54(30): 305003. https://doi.org/10.1088/1361-6463/abfe39

Duine R.A., Lee K.J., Parkin S.S.P., Stiles M.D. Synthetic antiferromagnetic spintronics. Nature Phys. 2018. 14: 217—219. https://doi.org/10.1038/s41567-018-0050-y

Kravets A.F., Polishchuk D.M., Dzhezherya Yu.I., Tovstolytkin A.I., Golub V.O., Korenivski V. Anisotropic magnetization relaxation in ferromagnetic multilayers with variable interlayer exchange coupling. Phys. Rev. B. 2016. 94(6): 064429. https://doi.org/10.1103/PhysRevB.94.064429

Polishchuk D.M. Ferromagnetic resonance in nanostructures with temperature-controlled interlayer interaction. Low Temperature Physics. 2016. 42(9): 761. https://doi.org/10.1063/1.4964116

Polishchuk D., Tykhonenko-Polishchuk Y., Borynskyi V., Kravets A., Tovstolytkin A., Korenivski V. Magnetic Hysteresis in Nanostructures with Thermally Controlled RKKY Coupling. Nanoscale Research Letters. 2018. 13: 245. https://doi.org/10.1186/s11671-018-2669-0

Polishchuk D.M., Tykhonenko-Polishchuk Yu.O., Holmgren E., Kravets A.F., Tovstolytkin A.I., Korenivski V. Giant magnetocaloric effect driven by indirect exchange in magnetic multilayers. Phys. Rev. Materials. 2018. 2(11): 114402. https://doi.org/10.1103/PhysRevMaterials.2.114402

Borynskyi V.Yu., Polishchuk D.M., Melnyk A.K., Kravets A.F., Tovstolytkin A.I., Korenivski V. Higher-order ferromagnetic resonances in periodic arrays of synthetic-antiferromagnet nanodisks. Appl. Phys. Lett. 2021. 119(19): 192402. https://doi.org/10.1063/5.0068111

Borynskyi V., Kravets A., Polishchuk D., Tovstolytkin A., Sharai I., Korenivski V., Melnyk A. Spin-wave Resonance in Arrays of Nanoscale Synthetic-antiferromagnets. In: IEEE 12th International Conference Nanomaterials: Applications & Properties. Krakow, Poland, 2022. https://doi.org/10.1109/NAP55339.2022.9934337

Périgo E.A., Hemery G., Sandre O., Ortega D., Garaio E., Plazaola F., Teran F.J. Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews. 2015. 2(4): 041302. https://doi.org/10.1063/1.4935688

Pucci C., Degl'Innocenti A., Gümüş M.B., Ciofani G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater. Sci. 2022. 10: 2103—2121. https://doi.org/10.1039/D1BM01963E

Peiravi M., Eslami H., Ansari M., Zare-Zardini H. Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society. 2022. 99(1): 100269. https://doi.org/10.1016/j.jics.2021.100269

Yelenich O., Solopan S., Kolodiazhnyi T., Tykhonenko Yu., Tovstolytkin A., Belous A. Magnetic Properties and AC Losses in AFe2O4 (A = Mn, Co, Ni, Zn) Nanoparticles Synthesized from Nonaqueous Solution. Journal of Chemistry. 2015. 2015: 532198. https://doi.org/10.1155/2015/532198

Tovstolytkin A.I. New Functionalities of Nanostructured Oxide Magnetics (by materials of scientific report at NAS Presidium Meeting 15 May 2013). Visn. Nac. Akad. Nauk Ukr. 2013. (6): 7—10. http://doi.org/10.15407/visn2013.06.007

Kalita V.M., Tovstolytkin A.I., Ryabchenko S.M., Yelenich O.V., Solopan S.O., Belous A.G. Mechanisms of AC losses in magnetic fluids based on substituted manganites. Phys. Chem. Chem. Phys. 2015. 17(27): 18087—18097. https://doi.org/10.1039/C5CP02822A

Shlapa Y., Kulyk M., Kalita V., Polek T., Tovstolytkin A., Greneche J.-M., Solopan S., Belous A. Iron-Doped (La, Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia. Nanoscale Res. Lett. 2016. 11: 24. https://doi.org/10.1186/s11671-015-1223-6

Kalita V.M., Polishchuk D.M., Kovalchuk D.G., Bodnaruk A.V., Solopan S.O., Tovstolytkin A.I., Ryabchenko S.M., Belous A.G. Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum–strontium manganite nanoparticles. Phys. Chem. Chem. Phys. 2017. 19: 27015—27024. https://doi.org/10.1039/C7CP05547A

Belous A., Tovstolytkin A., Solopan S., Shlapa Yu. Synthesis, Properties and Applications of some Magnetic Oxide Based Nanoparticles and Films. Acta Physica Polonica A. 2018. 133(4): 1006—1012. https://doi.org/10.12693/APhysPolA.133.1006

Solopan S.O., Nedelko N., Lewińska S., Ślawska-Waniewska A., Zamorskyi V.O., Tovstolytkin A.I., Belous A.G. Core/shell architecture as an efficient tool to tune DC magnetic parameters and AC losses in spinel ferrite nanoparticles. Journal of Alloys and Compounds. 88: 1203—1210. https://doi.org/10.1016/j.jallcom.2019.02.276

Tovstolytkin A.I., Lytvynenko Ya.M., Bodnaruk A.V., Bondar O.V., Kalita V.M., Ryabchenko S.M., Shlapa Yu.Yu., Solopan S.O., Belous A.G. Unusual magnetic and calorimetric properties of lanthanum-strontium manganite nanoparticles. Journal of Magnetism and Magnetic Materials. 2020. 498: 166088. https://doi.org/10.1016/j.jmmm.2019.166088

Zamorskyi V.O., Lytvynenko Ya.M., Pogorily A.M., Tovstolytkin A.I., Solopan S.O., Belous A.G. Magnetic Properties of Fe3O4/CoFe2O4 Composite Nanoparticles with Core/Shell Architecture. Ukrainian Journal of Physics. 2020. 65(10): 904. https://doi.org/10.15407/ujpe65.10.904

Nakonechna O.I., Lotey G.S., Kaur J., Bodnaruk A.V., Kalita V.M., Shlapa Yu.Yu., Solopan S.O., Tovstolytkin A.I. AC Field Threshold Effect as a Key Factor toward the Efficient Heating of Fluids with NaFeO2 Magnetic Nanoparticles. Particle & Particle Systems Characterization. 2022. 39(9). https://doi.org/10.1002/ppsc.202200095

Ukrainian physicists will receive international grants. https://www.nas.gov.ua/UA/Messages/news/Pages/View.aspx?MessageID=9553

Published

2023-02-20