Mechanisms of cell adaptation to hypoxia, or how to "block oxygen" to a malignant tumor
Nobel Prize in Physiology or Medicine for 2019
DOI:
https://doi.org/10.15407/visn2019.12.003Abstract
The 2019 Nobel Prize in Physiology or Medicine was awarded to two American scientists — William G. Kaelin, Jr. from Harvard University and Gregg L. Semenza from Johns Hopkins University — and British researcher Sir Peter J. Ratcliffe of Oxford University “for their discoveries of how cells sense and adapt to oxygen availability.” The work of this year's Nobel laureates laid the groundwork for understanding how oxygen levels affect cellular metabolism and physiological functions. Their research paves the way for new strategies to fight anemia, cancer and many other diseases.
References
Citation Laureates 2019.
The Nobel Prize in Physiology or Medicine 2019. Press release. https://www.nobelprize.org/prizes/medicine/2019/press-release/
William Kaelin Jr. Wikipedia. https://en.wikipedia.org/wiki/William_Kaelin_Jr.
Carolyn Kaelin. Wikipedia. https://en.wikipedia.org/wiki/Carolyn_Kaelin
Peter J. Ratcliffe. Wikipedia. https://en.wikipedia.org/wiki/Peter_J._Ratcliffe
Gregg L. Semenza. Wikipedia. https://en.wikipedia.org/wiki/Gregg_L._Semenza
Johnson R.S. Scientific Background. How cells sense and adapt to oxygen availability. https://www.nobelprize.org/prizes/medicine/2019/advanced-information/
Belitser V.A., Tsybakova E.T. On the mechanism of phosphorylation associated with respiration. Biochemistry. 1939. 4(5): 516.
Miyake T., Kung C.K., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977. 252(15): 5558.
Bondurant M.C., Koury M.J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Biol. 1986. 6(7): 2731. DOI: https://doi.org/10.1128/MCB.6.7.2731
Semenza G.L., Nejfelt M.K., Chi S.M., Antonarakis S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA. 1991. 88(13): 5680. DOI: https://doi.org/10.1073/pnas.88.13.5680
Beck I., Ramirez S., Weinmann R., Caro J. Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 1991. 266(24): 15563.
Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992. 12(12): 5447. DOI: https://doi.org/10.1128/mcb.12.12.5447
Maxwell P.H., Pugh C.W., Ratcliffe P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA. 1993. 90(6): 2423. DOI: https://doi.org/10.1073/pnas.90.6.2423
Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA. 1993. 90(9): 4304. DOI: https://doi.org/10.1073/pnas.90.9.4304
Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995. 270(3): 1230. DOI: https://doi.org/ 10.1074/jbc.270.3.1230
Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995. 92(12): 5510. DOI: https://doi.org/10.1073/pnas.92.12.5510
Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA. 1997. 94(9): 4273. DOI: https://doi.org/10.1073/pnas.94.9.4273
Flamme I., Frohlich T., von Reutern M., Kappel A., Damert A., Risau W. HRF, a putative basic helixloop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech. Dev. 1997. 63(1): 51. DOI: https://doi.org/10.1016/s0925-4773(97)00674-6
Hogenesch J.B., Chan W.K., Jackiw V.H., Brown R.C., Gu Y.Z., Pray-Grant M., Perdew G.H., Bradfield C.A. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 1997. 272(13): 8581. DOI: https://doi.org/10.1016/s0925-4773(97)00674-6
Tian H., McKnight S.L., Russell D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997. 11(1): 72. DOI: https://doi.org/10.1101/gad.11.1.72
Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. 286(6), R977. DOI: https://doi.org/10.1152/ajpregu.00577.2003
Pugh C.W., O'Rourke J.F., Nagao M., Gleadle J.M., Ratcliffe P.J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J. Biol. Chem. 1997. 272(17): 11205. DOI: https://doi.org/10.1074/jbc.272.17.11205
Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997. 272(36): 22642. DOI: https://doi.org/10.1074/jbc.272.36.22642
Huang L.E., Gu J., Schau M., Bunn H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA. 1998. 95(14): 7987. DOI: https://doi.org/10.1073/pnas.95.14.7987
Iliopoulos O., Kibel A., Gray S., Kaelin W.G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1995. 1(8): 822. DOI: https://doi.org/10.1038/nm0895-822
Iliopoulos O., Levy A.P., Jiang C., Kaelin W.G. Jr., Goldberg M.A. Negative regulation of hypoxia inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA. 1996. 93(20): 10595. DOI: https://doi.org/10.1073/pnas.93.20.10595
Duan D.R., Pause A., Burgess W.H., Aso T., Chen D.Y., Garrett K.P., Conaway R.C., Conaway J.W., Linehan W.M., Klausner R.D. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995. 269(5229): 1402. DOI: https://doi.org/10.1126/science.7660122
Kibel A., Iliopoulos O., DeCaprio J.A., Kaelin W.G. Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995. 269(5229): 1444. DOI: https://doi.org/10.1126/science.7660130
Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M., Klausner R.D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA. 1997. 94(6): 2156. DOI: https://doi.org/10.1073/pnas.94.6.2156
Lonergan K.M., Iliopoulos O., Ohh M., Kamura T., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 1998. 18(2): 732. DOI: https://doi.org/10.1128/mcb.18.2.732
Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999. 399(6733): 271. DOI: https://doi.org/10.1038/20459
Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., Kaelin W.G. Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001. 292(5516): 464. DOI: https://doi.org/10.1126/science.1059817
Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001. 292(5516): 468. DOI: https://doi.org/10.1126/science.1059796
Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001. 294(5545): 1337. DOI: https://doi.org/10.1126/science.1066373
Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O'Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P.H., Pugh C.W., Schofield C.J., Ratcliffe P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001. 107(1): 43. DOI: https://doi.org/10.1016/s0092-8674(01)00507-4
Ivan M., Haberberger T., Gervasi D.C., Michelson K.S., Gunzler V., Kondo K., Yang H., Sorokina I., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA. 2002. 99(21): 13459. DOI: https://doi.org/10.1073/pnas.192342099
Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001. 15(20): 2675. DOI: https://doi.org/10.1101/gad.924501
Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002. 295(5556): 858. DOI: https://doi.org/10.1126/science.1068592
Ruas J.L., Berchner-Pfannschmidt U., Malik S., Gradin K., Fandrey J., Roeder R.G., Pereira T., Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J. Biol. Chem. 2010. 285(4): 2601. DOI: https://doi.org/10.1074/jbc.M109.021824
Li Z., Wang D., Na X., Schoen S.R., Messing E.M., Wu G. The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J. 2003. 22(8):1857. DOI: https://doi.org/10.1093/emboj/cdg173
Schödel J., Oikonomopoulos S., Ragoussis J., Pugh C.W., Ratcliffe P.J., Mole D.R. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011. 117(23): e207. DOI: https://doi.org/10.1182/blood-2010-10-314427
Chavez J.C., Baranova O., Lin J., Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J. Neurosci. 2006. 26(37): 9471. DOI: https://doi.org/10.1523/JNEUROSCI.2838-06.2006
Dhillon S. Roxadustat: First Global Approval. Drugs. 2019. 79(5): 563. DOI: https://doi.org/10.1007/s40265-019-01077-1
Frost J., Galdeano C., Soares P., Gadd M.S., Grzes K.M., Ellis L., Epemolu O., Shimamura S., Bantscheff M., Grandi P., Read K.D., Cantrell D.A., Rocha S., Ciulli A. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat. Commun. 2016. 7: 13312. DOI: https://doi.org/10.1038/ncomms13312
Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., Dang C.V., Liu J.O., Semenza G.L. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008. 105(50): 19579. DOI: https://doi.org/10.1073/pnas.0809763105
Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc. Natl. Acad. Sci. USA. 2009. 106(9): E26. DOI: https://doi.org/10.1073/pnas.0813047106
Marshall D.J., Harried S.S., Murphy J.L., Hall C.A., Shekhani M.S., Pain C., Lyons C.A., Chillemi A., Malavasi F., Pearce H.L., Thorson J.S., Prudent J.R. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol. Ther. 2016. 24(10): 1760. DOI: https://doi.org/10.1038/mt.2016.119
Scheepstra M., Hekking K.F.W., van Hijfte L., Folmer R.H.A. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput. Struct. Biotechnol. J. 2019. 17: 160. DOI: https://doi.org/10.1016/j.csbj.2019.01.006
Neklesa T., Snyder L.B., Willard R.R., Vitale N., Pizzano J., Gordon D.A., Bookbinder M., Macaluso J., Dong H., Ferraro C., Wang G., Wang J., Crews C.M., Houston J., Crew A.P., Taylor I. ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal of Clinical Oncology. 2019. 37(7): 259. DOI: https://doi.org/10.1200/JCO.2019.37.7_suppl.259
Maniaci C., Hughes S.J., Testa A., Chen W., Lamont D.J., Rocha S., Alessi D.R., Romeo R., Ciulli A. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 2017. 8(1): 830. DOI: https://doi.org/10.1038/s41467-017-00954-1
Zengerle M., Chan K.-H., Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015. 10(8): 1770. DOI: https://doi.org/10.1021/acschembio.5b00216
da Motta L.L., Ledaki I., Purshouse K., Haider S., De Bastiani M.A., Baban D., Morotti M., Steers G., Wigfield S., Bridges E., Li J.L., Knapp S., Ebner D., Klamt F., Harris A.L., McIntyre A. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017. 36(1): 122. DOI: https://doi.org/10.1038/onc.2016.184
Pettersson M., Crews C.M. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. Drug Discov. Today Technol. 2019. 31: 15. DOI: https://doi.org/10.1016/j.ddtec.2019.01.002
Bayer, Arvinas Partner on PROTAC Joint Venture, Treatments for Cancer, CV, Gynecological Diseases. https://www.genengnews.com/news/bayer-arvinas-partner-on-protac-therapies-for-cancer-cv-gynecological-diseases/
Dawson M.A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017. 355(6330): 1147. DOI: https://doi.org/10.1126/science.aam7304
Choudhry H., Harris A.L., McIntyre A. The tumour hypoxia induced non-coding transcriptome. Mol. Aspects Med. 2016. 47-48: 35. DOI: https://doi.org/10.1016/j.mam.2016.01.003
Choudhry H., Harris A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018. 27(2): 281. DOI: https://doi.org/10.1016/j.cmet.2017.10.005
Zhao H., Yang L., Baddour J., Achreja A., Bernard V., Moss T., Marini J.C., Tudawe T., Seviour E.G., San Lucas F.A., Alvarez H., Gupta S., Maiti S.N., Cooper L., Peehl D., Ram P.T., Maitra A., Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016. 5: e10250. DOI: https://doi.org/10.7554/eLife.10250
Rong L., Li R., Li S., Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol. Lett. 2016. 11(1): 500. DOI: https://doi.org/10.3892/ol.2015.3841
Berchem G., Noman M.Z., Bosseler M., Paggetti J., Baconnais S., Le Cam E., Nanbakhsh A., Moussay E., Mami-Chouaib F., Janji B., Chouaib S. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. OncoImmunology. 2015. 5(4): e1062968. DOI: https://doi.org/10.1080/2162402X.2015.1062968
Fu L., Kettner N.M. The circadian clock in cancer development and therapy. Prog. Mol. Biol. Transl. Sci. 2013. 119: 221. DOI: https://doi.org/10.1016/B978-0-12-396971-2.00009-9
Chilov D., Hofer T., Bauer C., Wenger R.H., Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001. 15(14): 2613. DOI: https://doi.org/10.1096/fj.01-0092com
Ghorbel M.T., Coulson J.M., Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol. Cell. Neurosci. 2003. 22(3): 396. DOI: https://doi.org/10.1016/s1044-7431(02)00019-2
Yu C., Yang S.L., Fang X., Jiang J.X., Sun C.Y., Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol. Med. Rep. 2015. 11(5): 4002. DOI: https://doi.org/10.3892/mmr.2015.3199
Koyanagi S., Kuramoto Y., Nakagawa H., Aramaki H., Ohdo S., Soeda S., Shimeno H. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003. 63(21): 7277.
Wu Y., Tang D., Liu N., Xiong W., Huang H., Li Y., Ma Z., Zhao H., Chen P., Qi X., Zhang E.E. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017. 25(1): 73. DOI: https://doi.org/10.1016/j.cmet.2016.09.009
Merck to Acquire Peloton Therapeutics, Bolstering Oncology Pipeline. https://www.businesswire.com/news/home/20190521005432/en/Merck-Acquire-Peloton-Therapeutics-Bolstering-Oncology-Pipeline