Discoveries that gave a fresh look at the Universe
Nobel Prize in Physics for 2019
DOI:
https://doi.org/10.15407/visn2019.12.020Abstract
On October 8, the Nobel Committee at the Royal Swedish Academy of Sciences announced the decision to award the Nobel Prize in Physics in 2019. Half of the award went to Canadian-American scientist James Peebles “for theoretical discoveries in physical cosmology.” The second half of the award was shared by Swiss astrophysicists Michel Mayor and Didier Queloz “for the discovery of an exoplanet orbiting a solar-type star.” This article is about the first, so to speak, “theoretical” part of the award.
References
Gamow G. The Evolution of the Universe. Nature. 1948. 162(4122): 680. DOI: http://dx.doi.org/10.1038/162680a0
Alpher R.A., Herman R.C., Gamow G.A. Thermonuclear Reactions in the Expanding Universe. Phys. Rev. 1948. 74(9): 1198. DOI: http://dx.doi.org/10.1103/PhysRev.74.1198.2
Doroshkevich A.G., Novikov I.D. Mean radiation density in Metagalaxy and some problems of relativistic cosmology. Dokl. Akad. Nauk SSSR. 1964. 154(4): 809.
Hoyle F., Tayler R.J. The Mystery of the Cosmic Helium Abundance. Nature. 1964. 203(4950): 1108. DOI: http://dx.doi.org/10.1038/2031108a0
Dicke R.H., Peebles P.J.E., Roll P.G., Wilkinson D.T. Cosmic Black-Body Radiation. Astrophys. J. 1965. 142(5): 414. DOI: http://dx.doi.org/10.1086/148306
Penzias A., Wilson R. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965. 142(5): 419. DOI: http://dx.doi.org/10.1086/148307
Roll P.G., Wilkinson D.T. Cosmic Background Radiation at 3.2 cm-Support for Cosmic Black-Body Radiation. Phys. Rev. Lett. 1966. 16(3): 405. DOI: http://dx.doi.org/10.1103/PhysRevLett.16.405
Peebles P.J.E. The Black-Body Radiation Content of the Universe and the Formation of Galaxies. Astrophys. J. 1965. 142(11): 1317. DOI: http://dx.doi.org/10.1086/148417
Lifshitz E.M. On the gravitational stability of the expanding universe. JETP. 1946. 16: 587.
Peebles P.J.E. Primeval Helium Abundance and the Primeval Fireball. Phys. Rev. Lett. 1966. 16(10): 410. DOI: http://dx.doi.org/10.1103/PhysRevLett.16.410
Peebles P.J.E. Primordial Helium Abundance and the Primordial Fireball. II. Astrophys. J. 1966. 146(11): 546. DOI: http://dx.doi.org/10.1086/148918
Peebles P.J.E. Recombination of the Primeval Plasma. Astrophys. J. 1968. 153(7): 1. DOI: http://dx.doi.org/10.1086/149628
Sachs R.K., Wolfe A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967. 147(1): 73. DOI: http://dx.doi.org/10.1086/148982
Rees M.J., Sciama D.W. Large-scale Density Inhomogeneities in the Universe. Nature. 1968. 217(5128): 511. DOI: http://dx.doi.org/10.1038/217511a0
Silk J. Cosmic Black-Body Radiation and Galaxy Formation. Astrophys. J. 1968. 151(2): 459. DOI: http://dx.doi.org/10.1086/149449
Sunyaev R.A., Zeldovich Ya.B. The Spectrum of Primordial Radiation, its Distortions and their Significance. Comments Astrophys. Space Phys. 1970. 2(3): 66.
Sunyaev R.A., Zeldovich Ya.B. Small-Scale Fluctuations of Relic Radiation. Astrophysics and Space Science. 1970. 7(1): 3. DOI: https://doi.org/10.1007/BF00653471
Sunyaev R.A., Zeldovich Ya.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972. 4(11): 173.
Peebles P.J.E., Yu J.T. Primeval adiabatic perturbation in an expanding Universe. Astrophys. J. 1970. 162(12): 815. DOI: http://dx.doi.org/10.1086/150713
Peebles P.J.E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. 1982. 263: L1. DOI: http://dx.doi.org/10.1086/183911
Smoot G.F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 1992. 396: L1. DOI: http://dx.doi.org/10.1086/186504
Bond J.R.,. Szalay A.S. The collisionless damping of density fluctuations in an expanding universe. Astrophys. J. 1983. 274: 443. DOI: http://dx.doi.org/10.1086/161460
Blumenthal G.R., Faber S.M., Primack J.R., Rees M.R. Formation of galaxies and large-scale structure with dark matter. Nature. 1984. 311(5986): 517. DOI: http://dx.doi.org/10.1038/311517a0
Peebles P.J.E. Tests of cosmological models constrained by inflation. Astrophys. J. 1984. 284: 439. http://dx.doi.org/10.1086/162425
Starobinskii A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979. 30(11): 682.
Starobinsky A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B. 1980. 91(1): 99. DOI: https://doi.org/10.1016/0370-2693(80)90670-X
Mukhanov V.F., Chibisov G.V. Quantum fluctuations and a nonsingular universe. JETP Lett. 1981. 33: 532.
Guth A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D. 1981. 23: 347. DOI: https://doi.org/10.1103/PhysRevD.23.347
Sato K. First-order phase transition of a vacuum and the expansion of the Universe. Mon. Not. R. Astron. Soc. 1981. 195: 467. DOI: https://doi.org/10.1093/mnras/195.3.467
Linde A.D. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B. 1982. 108: 389. DOI: https://doi.org/10.1016/0370-2693(82)91219-9
Hawking S.W., Moss I.L. Supercooled phase transitions in the very early universe. Phys. Lett. B. 1982. 110: 35. DOI: https://doi.org/10.1016/0370-2693(82)90946-7
Albrecht A., Steinhardt P. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982. 48: 1220. DOI: https://doi.org/10.1103/PhysRevLett.48.1220
Riess A.G., Filippenko A.V., Challis P. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998. 16: 1009. DOI: https://doi.org/10.1086/300499
Schmidt B.P., Suntzeff N.B., Phillips M.M. et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. Astrophys. J. 1998. 507: 46. DOI: https://doi.org/10.1086/306308
Perlmutter S., Aldering G., Goldhaber G. et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999. 517: 565. DOI: https://doi.org/10.1086/307221
Peebles P.J.E., Ratra B. Cosmology with a Time-Variable Cosmological “Constant”. Astrophys. J. 1988. 325: L17. DOI: https://doi.org/10.1086/185100
Ratra B., Peebles P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 1988. 37: 3406. DOI: https://doi.org/10.1103/PhysRevD.37.3406