Discoveries that gave a fresh look at the Universe

Nobel Prize in Physics for 2019

Authors

  • B.S. Novosyadlyj Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15407/visn2019.12.020

Abstract

On October 8, the Nobel Committee at the Royal Swedish Academy of Sciences announced the decision to award the Nobel Prize in Physics in 2019. Half of the award went to Canadian-American scientist James Peebles “for theoretical discoveries in physical cosmology.” The second half of the award was shared by Swiss astrophysicists Michel Mayor and Didier Queloz “for the discovery of an exoplanet orbiting a solar-type star.” This article is about the first, so to speak, “theoretical” part of the award.

References

Gamow G. The Evolution of the Universe. Nature. 1948. 162(4122): 680. DOI: http://dx.doi.org/10.1038/162680a0

Alpher R.A., Herman R.C., Gamow G.A. Thermonuclear Reactions in the Expanding Universe. Phys. Rev. 1948. 74(9): 1198. DOI: http://dx.doi.org/10.1103/PhysRev.74.1198.2

Doroshkevich A.G., Novikov I.D. Mean radiation density in Metagalaxy and some problems of relativistic cosmology. Dokl. Akad. Nauk SSSR. 1964. 154(4): 809.

Hoyle F., Tayler R.J. The Mystery of the Cosmic Helium Abundance. Nature. 1964. 203(4950): 1108. DOI: http://dx.doi.org/10.1038/2031108a0

Dicke R.H., Peebles P.J.E., Roll P.G., Wilkinson D.T. Cosmic Black-Body Radiation. Astrophys. J. 1965. 142(5): 414. DOI: http://dx.doi.org/10.1086/148306

Penzias A., Wilson R. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965. 142(5): 419. DOI: http://dx.doi.org/10.1086/148307

Roll P.G., Wilkinson D.T. Cosmic Background Radiation at 3.2 cm-Support for Cosmic Black-Body Radiation. Phys. Rev. Lett. 1966. 16(3): 405. DOI: http://dx.doi.org/10.1103/PhysRevLett.16.405

Peebles P.J.E. The Black-Body Radiation Content of the Universe and the Formation of Galaxies. Astrophys. J. 1965. 142(11): 1317. DOI: http://dx.doi.org/10.1086/148417

Lifshitz E.M. On the gravitational stability of the expanding universe. JETP. 1946. 16: 587.

Peebles P.J.E. Primeval Helium Abundance and the Primeval Fireball. Phys. Rev. Lett. 1966. 16(10): 410. DOI: http://dx.doi.org/10.1103/PhysRevLett.16.410

Peebles P.J.E. Primordial Helium Abundance and the Primordial Fireball. II. Astrophys. J. 1966. 146(11): 546. DOI: http://dx.doi.org/10.1086/148918

Peebles P.J.E. Recombination of the Primeval Plasma. Astrophys. J. 1968. 153(7): 1. DOI: http://dx.doi.org/10.1086/149628

Sachs R.K., Wolfe A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967. 147(1): 73. DOI: http://dx.doi.org/10.1086/148982

Rees M.J., Sciama D.W. Large-scale Density Inhomogeneities in the Universe. Nature. 1968. 217(5128): 511. DOI: http://dx.doi.org/10.1038/217511a0

Silk J. Cosmic Black-Body Radiation and Galaxy Formation. Astrophys. J. 1968. 151(2): 459. DOI: http://dx.doi.org/10.1086/149449

Sunyaev R.A., Zeldovich Ya.B. The Spectrum of Primordial Radiation, its Distortions and their Significance. Comments Astrophys. Space Phys. 1970. 2(3): 66.

Sunyaev R.A., Zeldovich Ya.B. Small-Scale Fluctuations of Relic Radiation. Astrophysics and Space Science. 1970. 7(1): 3. DOI: https://doi.org/10.1007/BF00653471

Sunyaev R.A., Zeldovich Ya.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972. 4(11): 173.

Peebles P.J.E., Yu J.T. Primeval adiabatic perturbation in an expanding Universe. Astrophys. J. 1970. 162(12): 815. DOI: http://dx.doi.org/10.1086/150713

Peebles P.J.E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. 1982. 263: L1. DOI: http://dx.doi.org/10.1086/183911

Smoot G.F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 1992. 396: L1. DOI: http://dx.doi.org/10.1086/186504

Bond J.R.,. Szalay A.S. The collisionless damping of density fluctuations in an expanding universe. Astrophys. J. 1983. 274: 443. DOI: http://dx.doi.org/10.1086/161460

Blumenthal G.R., Faber S.M., Primack J.R., Rees M.R. Formation of galaxies and large-scale structure with dark matter. Nature. 1984. 311(5986): 517. DOI: http://dx.doi.org/10.1038/311517a0

Peebles P.J.E. Tests of cosmological models constrained by inflation. Astrophys. J. 1984. 284: 439. http://dx.doi.org/10.1086/162425

Starobinskii A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979. 30(11): 682.

Starobinsky A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B. 1980. 91(1): 99. DOI: https://doi.org/10.1016/0370-2693(80)90670-X

Mukhanov V.F., Chibisov G.V. Quantum fluctuations and a nonsingular universe. JETP Lett. 1981. 33: 532.

Guth A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D. 1981. 23: 347. DOI: https://doi.org/10.1103/PhysRevD.23.347

Sato K. First-order phase transition of a vacuum and the expansion of the Universe. Mon. Not. R. Astron. Soc. 1981. 195: 467. DOI: https://doi.org/10.1093/mnras/195.3.467

Linde A.D. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B. 1982. 108: 389. DOI: https://doi.org/10.1016/0370-2693(82)91219-9

Hawking S.W., Moss I.L. Supercooled phase transitions in the very early universe. Phys. Lett. B. 1982. 110: 35. DOI: https://doi.org/10.1016/0370-2693(82)90946-7

Albrecht A., Steinhardt P. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982. 48: 1220. DOI: https://doi.org/10.1103/PhysRevLett.48.1220

Riess A.G., Filippenko A.V., Challis P. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998. 16: 1009. DOI: https://doi.org/10.1086/300499

Schmidt B.P., Suntzeff N.B., Phillips M.M. et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. Astrophys. J. 1998. 507: 46. DOI: https://doi.org/10.1086/306308

Perlmutter S., Aldering G., Goldhaber G. et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999. 517: 565. DOI: https://doi.org/10.1086/307221

Peebles P.J.E., Ratra B. Cosmology with a Time-Variable Cosmological “Constant”. Astrophys. J. 1988. 325: L17. DOI: https://doi.org/10.1086/185100

Ratra B., Peebles P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 1988. 37: 3406. DOI: https://doi.org/10.1103/PhysRevD.37.3406

Published

2019-12-18

How to Cite

Novosyadlyj, B. (2019). Discoveries that gave a fresh look at the Universe : Nobel Prize in Physics for 2019. Visnyk of the National Academy of Sciences of Ukraine, (12), 20–27. https://doi.org/10.15407/visn2019.12.020