Modeling of gravity currents in oceans and inland reservoirs

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, September 11, 2019

Authors

  • K.V. Terletska Institute of Mathematical Machines and Systems Problems of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2019.10.031

Keywords:

stratified flows, internal waves, internal waves breaking over the shelf, gravity currents

Abstract

State-of-the-art oceanographic issues related to stratified flows, such as gravity currents on the continental slope near the Antarctic Peninsula, where the Ukrainian Antarctic Station Vernadsky Research Base is located, generation and propagation of internal waves in the seas and oceans and their role in the mixing in the coastal zones are considered.

References

Gill A.E. Atmosphere — Ocean Dynamics. Academic Press,1982.

Parnum I., MacLeod R., Alec D., Gavrilov A. The effect of internal waves on underwater sound propagation. Acoustics. 2017. 24: 1. https://www.acoustics.asn.au/conference_proceedings/AAS2017/papers/p76.pdf

Duda T.F., Preisig J.C. A Modeling Study of Acoustic Propagation Through Moving Shallow-Water Solitary Wave Packets. IEEE Journal of Oceanic Engineering. 1999. 24(1): 16. DOI: https://doi.org/10.1109/48.740153

Song Z.J., Teng B., Gou Y. et al. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Res. 2011. 33: 120. DOI: https://doi.org/10.1016/j.apor.2011.01.003

Quaresma L., Vitorino A., Oliveira A. da Silva J.C.B. Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Marine Geology. 2007. 246(2-4): 3550. DOI: https://doi.org/10.1016/j.margeo.2007.04.019

Wunsch C., Ferrari R. Vertical mixing, energy, and the general circulation of the oceans Annu. Rev. Fluid Mech. 2004. 36: 281. DOI: https://doi.org/10.1146/annurev.fluid. 36.050802.122121

Marshall J., Hill C.,Perelman L., Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J. Geophys. Res. 1997. 102(C3): 5733. DOI: https://doi.org/10.1029/96JC02776

Maderich V., Brovchenko I., Terletska K., Hutter K. Numerical simulations of the nonhydrostatic transformation of basin-scale internal gravity waves and wave-enhanced meromixis in lakes. In: Hutter K. (ed.) Nonlinear internal waves in lakes. Series: Advances in Geophysical and Environmental Mechanics. Springer, 2012. P. 193–276. DOI: https://doi.org/10.1007/978-3-642-23438-5

Maderich V., Jung K.T., Terletska K., Brovchenko I., Talipova T. Incomplete similarity of internal solitary waves with trapped core. Fluid Dyn. Res. 2015. 47(3): 035511. DOI: https://doi.org/10.1088/0169-5983/47/3/035511

Talipova T., Terletska K., Maderich V., Brovchenko I., Jung K.T., Pelinovsky E., Grimshaw R. Internal solitary wave transformation over a bottom step: loss of energy. Phys. Fluids. 2013. 25(3): 032110. DOI: https://doi.org/10.1063/1.4797455

Terletska K., Jung K.T., Maderich V., Kim K.O. Frontal collision of internal solitary waves of first mode. Wave Motion. 2018. 77: 229. DOI: https://doi.org/10.1016/j.wavemoti.2017.12.006

Wessels F., Hutter, K. Interaction of internal waves with a topographic sill in a two-layered fluid. Journal of Physical Oceanography. 1996. 26(2): 5. https://doi.org/10.1175/1520-0485(1996)026<0005:IOIWWA>2.0.CO;2

Foldvik A., Gammelsrod T., Osterhus S. et al. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 1995. 53(4): 515. DOI: https://doi.org/10.1357/0022240953213089

Darelius E., Wahlin A.K. Downward flow of dense water leaning on a submarine ridge. Deep Sea Res. Part I. 2007. 54(7): 1173. DOI: https://doi.org/10.1016/j.dsr.2007.04.007

Wang Q., Danilov S., Schroeter J. Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: Idealized numerical simulations. Ocean Modelling. 2008. 28(1-3): 50. DOI: https://doi.org/10.1016/j.ocemod.2008.08.003

Wilchinsky A.V., Feltham D.L. Numerical simulation of the Filchner overflow. J. Geophys. Res. 2009. 114(C12): 12012. DOI: https://doi.org/10.1029/2008JC005013

Zhang Y.J., Baptista A.M. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling. 2008. 21 (3-4): 71. DOI: https://doi.org/10.1016/j.ocemod.2007.11.005

Maderich V., Terletska K., Brovchenko I. Structure and dynamics of gravity currents on a slope: a flow of transformed under the Ronne-Filchner ice water in the Weddell Sea. Ukrainian Antarctic Journal. 2010. (9): 263. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128422/25-Maderich.pdf?sequence=1

Maderich V., Terletska K., Brovchenko I. Modelling of multi-scale processes of formation of bottom and shelf waters in the southern part of the Weddell Sea. Ukrainian Antarctic Journal. 2017. 16: 45. DOI: https://doi.org/10.33275/1727-7485.16.2017.60

Published

2019-10-25