Advanced problems of molecular magnetism

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, September 12, 2018

Authors

  • V.V. Pavlishchuk Pisazhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2018.10.034

Keywords:

molecular magnetism, polynuclear complexes, multispin systems

Abstract

The results of studies on polynuclear complexes molecular magnetism in Pisarzhevsky Institute of Physical Chemistry of NAS of Ukraine are elucidated. Some original routes for synthesis of polynuclear complexes are elaborated which resulted in isolation of several hundred new multispin systems. Special attention is paid to the practical implementation of results. In particular, highly sensitive materials for non-destructive control of nuclear power station units and aircrafts, nanocomposites for magnetic expressive separation of biologically active substances and cancer diagnostics are developed.

References

Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Magnetic bistability in a metal-ion cluster. Nature. 1993. 365: 141. https://doi.org/10.1038/365141a0

Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets. (New York: Oxford University Press, 2006). P. 47–159. https://doi.org/10.1093/acprof:oso/9780198567530.001.0001

Pavlishchuk V.V. Molecular magnetism of the polynuclear complexes of 3D transition metals. Theor. Exp. Chem. 1997. 33(6): 303. https://doi.org/10.1002/chin.199845295

Pavlishchuk V.V., Kolotilov S. V., Addison A.W., Prushan M.J., Butcher R.J., Thompson L.K. Mono- and Trinuclear Nickel(II) Complexes with Sulfur-Containing Oxime Ligands: Uncommon Templated Coupling of Oxime with Nitrile. Inorg. Chem. 1999. 38(8): 1759. https://doi.org/10.1021/ic981277r

Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Butcher R.J., Thompson L.K. A new class of macrocyclic complexes formed via nickel-promoted macrocyclisation of dioxime with dinitrile. Chem. Commun. 2002. (5): 468. https://doi.org/10.1039/B111191B

Gavrilenko K.S., Vértes A., Vanko G., Kiss L.F., Addison A.W., Weyhermüller T., Pavlishchuk V.V. Synthesis, magnetochemistry and spectroscopy of heterometallic trinuclear basic acetates [Fe2M μ3-O(CF3COO)6(H2O)3]·H2O (M = Mn, Co, Ni). Eur. J. Inorg. Chem. 2002. (12): 3356. https://doi.org/10.1002/1099-0682(200212)2002:12<3347::AID-EJIC3347>3.0.CO;2-R

Pavlishchuk V.V., Gavrilenko K.S., Kolotilov S.V. Spin frustration and competing magnetic exchange interactions in polynuclear complexes of 3d metals. Theor. Exp. Chem. 2002. 38(1): 21. https://doi.org/10.1023/A:1015307203122

Pavlishchuk V.V., Birkelbach F., Weyhermüller T., Wieghardt K., Chaudhuri P. Polynuclear Complexes of the Pendent-Arm Ligand 1,4,7-Tris(acetophenoneoxime)-1,4,7-triazacyclononane. Inorg. Chem. 2002. 41(17): 4405. https://doi.org/10.1021/ic011322m

Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Schollmeyer D., Thompson L.K., Weyhermüller T., Goreshnik E.A. Structural, magnetic and related attributes of some oximate-bridged tetranuclear nickel (II) rhombs and a dinuclear congener. Dalton Trans. 2003. 8: 1588. https://doi.org/10.1039/B300539A

Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Schollmeyer D., Thompson L.K., Goreshnik E.A. A Tetrameric nickel (II) "chair" with both antiferromagnetic internal coupling and ferromagnetic spin alignment. Angew. Chem. Int. Ed. 2001. 40(24): 4734. https://doi.org/10.1002/1521-3773(20011217)40:24<4734::AID-ANIE4734>3.0.CO;2-D

Gavrilenko K.S., Punin S.V., Cador O., Golhen S., Ouahab L., Pavlishchuk V.V. Synthesis, structure, and magnetism of heterometallic carboxylate complexes [MnIII2MII4O2(PhCOO)10(DMF)4], M = MnII, CoII, NiII. Inorg. Chem. 2005. 44(16): 5903. https://doi.org/10.1021/ic0505448

Gavrilenko K.S., Punin S.V., Cador O., Golhen S., Ouahab L., Pavlishchuk V.V. In situ generation of carboxylate: an efficient strategy for a one-pot synthesis of homo- and heterometallic polynuclear complexes. J. Am. Chem. Soc. 2005. 127(35): 12246. https://doi.org/10.1021/ja050451p

Gavrilenko K.S., Cador O., Bernot K., Rosa P., Sessoli R., Golhen S., Pavlishchuk V.V., Ouahab L. Delicate crystal structure changes govern the magnetic properties of 1d coordination polymers based on 3d metal carboxylates. Chem. Eur. J. 2008. 14(7): 2034. https://doi.org/10.1002/chem.200701316

Lytvynenko A.S., Kolotilov S.V., Cador O., Gavrilenko K.S., Golhen S., Ouahab L., Pavlishchuk V.V. Porous 2D coordination polymeric formate built up by Mn(II) linking of Fe3O units: influence of guest molecules on magnetic properties. Dalton Trans. 2009. 18: 3503. https://doi.org/10.1039/B900359B

Polunin R.A., Kolotilov S.V., Kiskin M.A,, Cador O., Golhen S., Shvets O.V., Ouahab L., Dobrokhotova Z.V., Ovcharenko V.I., Eremenko I.L., Novotortsev V.M., Pavlishchuk V.V. Structural flexibility and sorption properties of 2D porous coordination polymers constructed from trinuclear heterometallic pivalates and 4,4'-bipyridine. Eur. J. Inorg. Chem. 2011. 32: 4985. https://doi.org/10.1002/ejic.201100791

Liu J.-L., Chen Y.-C., Tong M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018. 47(7): 2431. https://doi.org/10.1039/C7CS00266A

Benelli C., Gatteschi D. Introduction to Molecular Magnetism. From Transition Metals to Lanthanides. (Wiley-VCH, 2015).

Pavlishchuk V.V. Influence of structure on magnetic and photoluminescent properties of coordination compounds of 3d and 4f metals and nanocomposites based on them. Theor. Exp. Chem. 2017. 53(5): 296. https://doi.org/10.1007/s11237-017-9529-3

Ostrowska M., Fritsky I.O., Gumienna-Kontecka E., Pavlishchuk A.V. Metallacrown-based compounds: applications in catalysis, luminescence, molecular magnetism and adsorption. Coord. Chem. Rev. 2016. 327–328: 304. https://doi.org/10.1016/j.ccr.2016.04.017

Pavlishchuk A.V., Kolotilov S.V., Zeller M., Lofland S.E., Thompson L.K., Addison A.W., Hunter A.D. High Nuclearity Assemblies and One-Dimensional (1D) Coordination Polymers Based on Lanthanide–Copper 15-Metallacrown-5 Complexes (LnIII = Pr, Nd, Sm, Eu). Inorg. Chem. 2017. 56(21): 13152. https://doi.org/10.1021/acs.inorgchem.7b01944

Pavlishchuk A.V., Kolotilov S.V., Zeller M., Thompson L.K., Addison A.W. Formation of coordination polymers or discrete adducts via reactions of gadolinium(III)-copper(II) 15-metallacrown-5 complexes with polycarboxylates: synthesis, structures and magnetic properties. Inorg. Chem. 2014. 53(3): 1320. https://doi.org/10.1021/ic401928m

Vasylenko I.V., Gavrylenko K.S., Il'yin V.G., Golub V., Goloverda G., Kolesnichenko V., Addison A.W., Pavlishchuk V.V. The metamorphosis of heterometallic trinuclear antiferromagnetic complexes into nano-sized superparamagnetic spinels. Mater. Chem. Phys. 2010. 121(1-2): 47. https://doi.org/10.1016/j.matchemphys.2009.12.040

Vasylenko I.V., Gavrilenko K.S., Kotenko I.E., Cador O., Ouahab L., Pavlishchuk V.V. Solvothermal preparation and magnetic properties of monodisperse superparamagnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni). Theor. Exp. Chem. 2014. 50(4): 226. https://doi.org/10.1007/s11237-014-9370-x

Dolgykh L.Y., Stolyarchuk,I.L., Staraya L.A., Vasylenko I.V., Pyatnitsky Y.I. Catalytic properties of MnO, Fe2O3, and MnFe2O4 in the steam reforming of ethanol. Theor. Exp. Chem. 2014. 50(4): 245. https://doi.org/10.1007/s11237-014-9366-6

Iefremenko D.S., Telegeeva P.G., Yakovenko A.V., Vasilenko I.V., Telegeev G.D., Maluta S.S. Using CoFe2O4 nanoparticles for targeted delivery of methotrexate in osteosarcoma cells. Dopov. Nac. Akad. Nauk Ukr. 2013. (6): 157.

Vasylenko I.V., Yakovenko A.V., Yefremenko D.S., Telegeeva P.G., Dybkov M.V., Telegeev G.D. Magnetic-luminescent nanocomposite CoFe2O4@SiO2@Gd2O3 : Eu2O3 : synthesis, characterization, and engulfment by macrophages. Dopov. Nac. Akad. Nauk Ukr. 2016. (10): 88. https://doi.org/10.15407/dopovidi2016.10.088

Kolotilov S.V., Boltovets P.N., Snopok B.A., Pavlishchuk V.V. Nanosized magnetic composite for extraction of γ-immunoglobulins from biological media. Theor. Exp. Chem. 2006. 42(4): 211. https://doi.org/10.1007/s11237-006-0041-4

Lehmann J., Gaita-Ariño A., Coronado E., Loss D. Quantum computing with molecular spin systems. J. Mater. Chem. 2009. 19: 1672. https://doi.org/10.1039/B810634G

Sessoli R. Toward the quantum computer: magnetic molecules back in the race. ACS Cent. Sci. 2015. 1(9): 473. https://doi.org/10.1021/acscentsci.5b00384

Zheng Y.-Z., Evangelisti M., Tuna F., Winpenny R.E.P. Co-Ln mixed metal phosphonate grids and cages as molecular magnetic refrigerants. J. Am. Chem. Soc. 2012. 134(2): 1057. https://doi.org/10.1021/ja208367k

Sharples J.W., Collison D., McInnes E., Schnack J., Palacios E., Evangelisti M. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nat. Commun. 2014. 5: 5321. https://doi.org/10.1038/ncomms6321

Published

2018-10-25