Functional metallic shape memory materials: state of the art and application prospects

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, March 21, 2018

Authors

  • G.S. Firstov Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2018.06.019

Keywords:

shape memory functional materials, highly-entropy alloys, martensitic transformations

Abstract

An overview of the scientific direction devoted to the study of shape memory functional materials is presented. The special role played by Ukrainian scientists in its founding and development in the world is emphasized. It is noted that shape memory alloys such as nitinol or copper-based alloys cannot be used at elevated temperatures, and so-called high-temperature shape memory alloys have a number of disadvantages, which are mainly related to relaxation processes of internal stresses through plastic deformation and diffusion processes. Medical applications of industrial shape memory alloys are restricted by incomplete biocompatibility. The ways of improvement of alloys with memory of the form through the resistance of forms of degradation, thermal, mechanical, functional fatigue, etc. are analyzed. It is shown that it is the materials with AS / Tmelt not greater than 0.4, with low symmetry of the high-temperature phase, with the essential strengthening are the best for high temperature alloys application. At present, such properties as significant strengthening and slow diffusion are characteristic of the novel structural materials — high-entropy alloys, which by definition have high stability. In the Kurdyumov Institute for Metal Physics for the first time high values of the yield strength twice as high as for nitinol and the possibility of martensitic transformation and corresponding memory behavior was combined in high-entropy intermetallic compounds. It was concluded that new class of functional materials — high entropy shape memory alloys has been created. It will be possible not only to reach a new level of their application in the automotive, aerospace, energy or mining industries, but, most importantly, to deepen their medical application.

References

Duerig T.W., Melton K.N., Stöckel D. Engineering aspects of shape memory alloys. (London: Butterworth-Heinemann, 1990).

Otsuka K., Wayman C.M. Shape memory materials. (Cambridge: Cambridge University Press, 1998).

Ölander A. An electrochemical investigation of solid Cadmium-Gold alloy. J. Am. Chem. Soc. 1932. 54(10): 3819. http://dx.doi.org/10.1021/ja01349a004

Chang L.C., Read T.A. Plastic Deformation and Diffusionless Phase Changes in Metals – the Gold-Cadmium Beta Phase. Trans. AIME. 1951. 189: 47. http://dx.doi.org/10.1007/BF03398954

Burkart M.W., Read T.A. Diffusionless phase change in the Indium-Thallium system. Trans. AIME. 1953. 197: 1516. https://doi.org/10.1007/978-3-319-76968-4_45

Buehler W.J., Gilfrich J.W., Wiley R.C, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 1963. 34(5): 1475. https://doi.org/10.1063/1.1729603

Kurdyumov G.V. Selected Works. (Kyiv, Akademperiodyka, 2002).

Kurdyumov G.V. On the nature of diffusionless (martensitic) transformations. Proc. USSR Acad. Sci. 1948. 60(9): 1534.

Kurdyumov G.V. On the nature of diffusionless (martensitic) transformations. Zhurnal tekhnicheskoy fiziki (Technical Physics). 1948. 18: 999.

Kurdyumov G.V., Khandros L.G. On "thermoelastic" equilibrium in martensitic transformations. Proc. USSR Acad. Sci.. 1949. 66(2): 211.

Wayman C.M. Introduction to crystallography of martensitic transformations. (New York: McMillan, 1964).

Nishiyama Z. Martensitic transformation. (New York: Academic Press, 1978).

Warlimont H., Delaey L. Martensitic transformations in copper-, silver-, and gold-based alloys. (Pergamon Press, 1974).

Olson G.B., Owen W.S. Martensite. A tribute to Morris Cohen. (Ohio: ASM International, 1992).

Christian J.W. The Theory of Transformations in Metals and Alloys. (Oxford: Pergamon Press, 2002).

Lobodyuk V.A., Estrin E.I. Martensitic transformations. (Moscow, 2009).

Koval Yu.N., Lobodyuk V.A. Deformation and relaxation phenomena in martensitic transformations. (Kyiv: Naukova Dumka, 2010).

Khachin V.N. Martensitic inelasticity of alloys. Russian Physics Journal. 1985. 28(5): 404. https://doi.org/10.1007/BF00892273

Likhachev V.A., Kuzmin S.L., Kamentseva Z.P. Shape Memory Effect. (Leningrad, 1980).

Otsuka K., Shimizu K., Suzuki Yu. Shape Memory Alloys. (Moscow, 1990).

Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005. 50(5): 511. https://doi.org/10.1016/j.pmatsci.2004.10.001

Carosio S., Pozzolini P., Van Humbeeck J., Firstov G.S., Sutherland I., Tinnion E., Jowitt F. Application of shape memory alloys to develop a massive actuator for rock splitting. In: Pelton A.R., Duerig T. (eds.). Proc. SMST-2003. (SMST Society, Inc., 2003). P. 629.

Firstov G.S., Van Humbeeck J., Koval Yu.N. High temperature Shape Memory Alloys problems and prospects. J. Intel. Mater. Syst. Structures. 2006. 17(12): 1041. https://doi.org/10.1177/1045389X06063922

Beyer J., Mulder J.H. Recent Developments in high temperature shape memory alloys. Trans. Mater. Res. Soc. Jpn. 1994. 18B: 1003.

Otsuka K., Ren X. Recent developments in the research of shape memory alloys. Intermetallics. 1999. 7(5): 511. http://dx.doi.org/10.1016/S0966-9795(98)00070-3

Van Humbeeck J. High temperature shape memory alloys. Trans. ASME, J. Eng. Mater. Technol. 1999. 121(1): 98. http://dx.doi.org/10.1115/1.2816006

Koval Yu.N. High Temperature Shape Memory Effect in Some Alloys and Compounds. Mater. Sci. Forum. 2000. 327-328: 271. http://dx.doi.org/10.4028/www.scientific.net/MSF.327-328.271

Koval Yu.N., Firstov G.S., Kotko A.V. Martensitic transformation and shape memory effect in ZrCu intermetallic compound. Scripta Met. et Mater. 1992. 27(11): 1611. http://dx.doi.org/10.1016/0956-716X(92)90153-6

Jang W.Y., Van Humbeeck J., Delaey L., Koval Yu.N., Firstov G.S. The influence of Ti and Ni additions and thermal cycling on the martensitic transformation in CuZr alloys. Trans. Mater. Res. Soc. Jpn. 1994. 18B: 1009.

Koval Yu.N., Firstov G.S., Delaey L., Van Humbeeck J. The influence of Ni and Ti on the martensitic transformation and shape memory effect of the intermetallic compound ZrCu. Scripta Met. et Mater. 1994. 31(7): 799. http://dx.doi.org/10.1016/0956-716X(94)90481-2

Zhalko-Titarenko A.V., Yevlashina M.L., Antonov V.N., Yavorskii B.Yu., Koval Yu.N., Firstov G.S. Electronic and crystal structure of ZrCu intermetallic compound close to the point of the structural transformation. Physica Status Solidi. B. 1994. 184(1): 121. http://dx.doi.org/10.1002/pssb.2221840108

Koval Yu.N., Firstov G.S., Delaey L., Van Humbeeck J., Jang W.Y. B2 intermetallic compounds of Zr. New class of the shape memory alloys. J. Physique IV. 1995. C8. 5: 1103. http://dx.doi.org/10.1051/jp4/1995581103

Fonda R.W., Jones H.N. Microstructure, crystallography, and shape memory effect in equiatomic NbRu. Mater. Sci. Eng. A. 1999. A273–275: 275. http://dx.doi.org/10.1016/S0921-5093(99)00354-8

He Z.-R., Zhou J.-E., Furuya Y. Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys. Mater. Sci. Eng. A. 2003. A348(1-2): 36. http://dx.doi.org/10.1016/S0921-5093(02)00641-X

Ma Y.Q., Jiang C.B., Feng G., Xu H.B. Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation. Scripta Materialia. 2003. 48(4): 365. http://dx.doi.org/10.1016/S1359-6462(02)00450-5

Sawaguchi T., Sato M., Ishida A. Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Mater. Sci. Eng. A. 2002. 332(1): 47. http://dx.doi.org/10.1016/S0921-5093(01)01714-2

Tian Q.C., Chen J., Chen Y., Wu J. Oxidation behavior of TiNi-Pd shape memory alloys. Zeitschrift für Metallkunde. 2003. 94(1): 36. http://dx.doi.org/10.3139/146.030036

Mizuuchi K., Inoue K., Hamada K., Yamauchi K., Enami K., Sugioka M., Itami M., Okanda Y. Thermomechanical behavior of Ti–25Pd–24Ni–1W shape memory alloy reinforced Ti matrix smart composites. Mater. Sci. Eng. A. 2002. 329–331: 557. https://doi.org/10.1016/S0921-5093(01)01563-5

Wang Y.Q., Zheng Y.F., Cai W., Zhao L.C. The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Mater. 1999. 40(12): 1327. http://dx.doi.org/10.1016/S1359-6462(99)00085-8

Santamarta R., Segui C., Pons J., Cesari E. Martensite stabilisation in Ni50Ti32.2Hf17.7. Scripta Mater. 1999. 41(8): 867. http://dx.doi.org/10.1016/S1359-6462(99)00221-3

Hsieh S.F., Wu S.K. Martensitic transformation of quaternary Ti50.5-XNi49.5ZrX/2HfX/2 (X = 0±20 at.%) shape memory alloys. Mater. Characterization. 2000. 45: 143. https://doi.org/10.1016/S1044-5803(00)00068-1

Sivokha V.P., Meisner L.L. Shape memory effect in Ti50Ni50-xZrx alloys. Physica B: Condens. Matter. 2001. 296: 329. http://dx.doi.org/10.1016/S0921-4526(00)00573-1

Meng X.L., Cai W., Wang L.M., Zheng Y.F., Zhao L.C., Zhou L.M. Microstructure of stress-induced martensite in a Ti–Ni–Hf high temperature shape memory alloy. Scripta Mater. 2001. 45: 1177. https://doi.org/10.1016/S1359-6462(01)01147-2

Monastyrsky G.E., Odnosum V., Van Humbeeck J., Kolomytsev V.I., Koval Yu.N. Powder metallurgical processing of Ni–Ti–Zr alloys undergoing martensitic transformation: Part II. Intermetallics. 2002. 10: 613. https://doi.org/10.1016/S0966-9795(01)00115-7

Font J., Cesari E., Muntasell J., Pons J. Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons. Mater. Sci. Eng. A. 2003. 354: 201. https://doi.org/10.1016/S0921-5093(03)00003-0

Miyazaki S., Igo Y., Otsuka K. Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall. 1986. 34: 2045. https://doi.org/10.1016/0001-6160(86)90263-4

Pelton A.R. Nitinol Fatigue: A Review of Microstructures and Mechanisms. J. Mater. Eng. Performance. 2011. 20(4-5): 613. https://doi.org/10.1007/s11665-011-9864-9

Furuya Y., Park Y.C. Thermal cyclic deformation and degradation of shape memory effect in Ti-Ni alloy. Nondestr. Test. Eval. 1992. 8-9: 541. https://doi.org/10.1080/10589759208952731

Niendorf T., Krooß P., Batyrsina E., Paulsen A., Motemani Y., Ludwig A., Buenconsejo P., Frenzel J., Eggeler G., Maier H.J. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys. Mater. Sci. Eng. A 2015. 620: 359. http://dx.doi.org/10.1016/j.msea.2014.10.038

Stöckel D. Status and trends in shape memory technology. Proc. Actuator 92, Bremen, Germany (1992) P. 79–84.

Kumar P.K., Lagoudas D.C. Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater. 2010. 58(5): 1618. https://doi.org/10.1016/j.actamat.2009.11.006

Koval Yu., Firstov G., Odnosum V. High temperature martensitic transformation and shape memory behavior in HfIr intermetallic compound. Mater. Sci. Forum. 2013. 738-739: 72. https://doi.org/10.4028/www.scientific.net/MSF.738-739.72

Murty B.S., Yeh J.-W., Ranganathan S. High-Entropy Alloys. (Oxford: Butterworth-Heinemann, 2014).

Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 2011. 21(6): 433. https://doi.org/10.1016/S1002-0071(12)60080-X

Firstov S.A., Rogul’ T.G., Krapivka N.A., Ponomarev S.S., Tkach V.N., Kovylyaev V.V., Gorban’ V.F., Karpets M.V. Solid-Solution Hardening of a High-Entropy AlTiVCrNbMo Alloy. Russian Metallurgy (Metally). 2014. 4(4): 285. https://doi.org/10.1134/S0036029514040028

Tsai K.Y., Tsai M.H., Yeh J.W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater., 2013. 61(13): 4887. https://doi.org/10.1016/j.actamat.2013.04.058

Firstov G., Koval Yu., Van Humbeeck J., Timoshevskii A., Kosorukova T., Verhovlyuk P. Some physical principles of high temperature shape memory alloys design. In: Shape Memory Alloys: Properties, Technologies, Opportunities. Resnina N., Rubanik V. (eds.). (Zurich: Trans Tech Publications Inc., 2015)

Firstov G.S., Kosorukova T.A., Koval Yu.N., Odnosum V.V. High entropy shape memory alloys. Materials Today: Proceedings. 2015. 2: 499. https://doi.org/10.1016/j.matpr.2015.07.335

Pettifor D.G. Theory of the crystal structure of transition metals. J. Phys. C: Solid State Phys. 1970. 3: 367.

Firstov G.S., Kosorukova T.A., Koval Yu.N., Verhovlyuk P.A. Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Memory and Superelasticity, 2015. 1: 400. https://doi.org/10.1007/s40830-015-0039-7

Firstov G., Timoshevskii A., Kosorukova T., Koval Yu., Matviychuk Yu., Verhovlyuk P. Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. MATEC Web of Conferences. 2015. 33: 06006. https://doi.org/10.1051/matecconf/20153306006

Ma L.Q., Wang L.M., Zhang T. et al. Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe Co, Ni) alloys. Mater. Trans. 2002. 43:277. https://doi.org/10.2320/matertrans.43.277

Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds. 2011. 509: 6043. https://doi.org/10.1016/j.jallcom.2011.02.171

Lilensten L., Couzinié J.P., Perrière L., Bourgon J., Emery N., Guillot I. New structure in refractory high-entropy alloys. Mater. Lett. 2014. 132: 123. https://doi.org/10.1016/j.matlet.2014.06.064

Tsau C.-H. Phase transformation and mechanical behavior of TiFeCoNi alloy during annealing. Mater. Sci. Eng. A.. 2009. 501(1): 81. https://doi.org/10.1016/j.msea.2008.09.046

Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004. 375: 213. https://doi.org/10.1016/j.msea.2003.10.257

Yoneyama T., Miyazaki S. (eds.). Shape Memory Alloys for Biomedical Applications. (Woodhead Publ. Limited, 2009).

Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., Van Humbeeck J. Surface oxidation of NiTi shape memory alloy. Biomaterials. 2002. 23(24): 4863. https://doi.org/10.1016/S0142-9612(02)00244-2

Global Smart Materials Market Set for Rapid Growth, to Reach Around USD 70.85 Billion by 2022. Zion Market Research. 2017. July, 31. https://www.zionmarketresearch.com/news/smart-materials-market

Published

2018-06-22