Possibility of the identification of computationally irreducible systems

Authors

  • V.I. Bolshakov Prydneprovska State Academy of Civil Engineering and Architecture, Dnipropetrovsk
  • Yu.I. Dubrov Prydneprovska State Academy of Civil Engineering and Architecture, Dnipropetrovsk

DOI:

https://doi.org/10.15407/visn2016.03.076

Keywords:

simulation, billiard problem, strange attractor, fractal, computationally irreducible system

Abstract

It is shown that the identification of computationally irreducible systems can only be done by reference to literature and the arts, because only mind and intuition of man can reflect all possible nuances that occur within the system.

References

Lorentz H.A. The motion of electrons in metallic bodies II. Royal Netherlands Academy of Arts and Sciences. 1905. (7): 585.

Sinai Yа.G. Dynamical systems with elastic reflections. Russian Mathematical Surveys. 1970. 25(2): 137.

Dubrov Yu.I. In: Computer. Mathematics. Education. Proc. Int. Conf. (Dubna, 1998). [in Russian].

Dubrov Yu.I. Science as a system Self. Visn. Nac. Akad. Nauk Ukr. 2000. (2): 16. [in Ukrainian].

Uspenskiy V.A. Gödel’s incompleteness theorem. (Moscow: Nauka, 1982). [in Russian].

Bolshakov Vad.I., Bolshakov V.I., Dubrov Yu.I. On the incompleteness of formal axiomatics in the problems of identification of the metal structure. Visn. Nac. Akad. Nauk Ukr. 2014. (4): 55. [in Ukrainian].

Bolshakov V.I., Dubrov Yu.I. Metal Science & Heat Treatment of Metals (Metaloznavstvo ta termichna obrobka metaliv). 2014. (1): 19. [in Russian].

Published

2016-03-21