New luminescent nanomaterials: functional properties, biomedical and technical applications
according to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, October 11, 2017
DOI:
https://doi.org/10.15407/visn2017.12.028Keywords:
nanocrystals, antioxidants, photodynamic therapyAbstract
The report presents the results of investigations of the luminescence properties of a new class of nano-materials — polyfunctional redox-active nanocrystals that can simultaneously take an active part in biological processes occurring at the level of individual cells and are characterized by the presence of their own luminescence, the intensity of which correlates with the pro-/antioxidant activity of nanoparticles. As the most promising redox-active nanomaterials, cerium dioxide nanocrystals (CeO2-x) and orthovanadates of RE elements (ReVO4:Eu3+) are analyzed. Studies carried out with the help of stationary and time-resolved spectroscopy methods involving controlled change of redox-status of NPs surrounding, show that they can both directly demonstrate the anti-/prooxidant effect, and act as an intermediate in the processes of generation of singlet oxygen by photosensitizer molecules. The prospect of using nanocrystals for a range of biomedical applications as materials for the needs of photodynamic therapy and biological antioxidants is shown.
References
http://www.who.int/topics/essential_medicines/
Wagner V., Dullaart A., Bock A.K., Zweck A. The emerging nanomedicine landscape. Nature Biotechnology. 2006. 24(10): 1211. http://dx.doi.org/10.1038/nbt1006-1211
Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007. 2(12): 751. http://dx.doi.org/10.1038/nnano.2007.387
Pezzini I., Marino A., Del Turco S., Nesti C., Doccini S., Cappello V., Gemmi M., Parlanti P., Santorelli F.M., Mattoli V., Ciofani G. Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine. 2017. 12(4): 403. http://dx.doi.org/10.2217/nnm-2016-0342
Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications. 2007. (10): 1058. http://dx.doi.org/10.1039/b615134e
Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000. 408(6809): 239. http://dx.doi.org/10.1038/35041687
Rhee S.G. H2O2, a necessary evil for cell signaling. Science. 2006. 312(5782): 1882. http://dx.doi.org/10.1126/science.1130481
Lee S.S., Song W., Cho M., Puppala H.L., Nguyen P., Zhu H., Segatori L., Colvin V.L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano. 2013. 7(11): 9693. http://dx.doi.org/10.1021/nn4026806
Perez J.M., Asati A., Nath S., Kaittanis C. Synthesis of biocompatible dextran‐coated nanoceria with pH‐dependent antioxidant properties. Small. 2008. 4(5): 552. http://dx.doi.org/10.1002/smll.200700824
Das M., Patil S., Bhargava N., Kang J.F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007. 28(10): 1918. http://dx.doi.org/10.1016/j.biomaterials.2006.11.036
Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., Jang H., Yang H.S., Kim J.Y., Park H.K., Park S.P. Ceria nanoparticles that can protect against ischemic stroke. Angewandte Chemie. 2012. 124(44): 11201. http://dx.doi.org/10.1002/anie.201203780
Masalov A., Viagin O., Maksimchuk P., Seminko V., Bespalova I., Aslanov A., Malyukin Y., Zorenko Y. Formation of luminescent centers in CeO2 nanocrystals. Journal of Luminescence. 2014. 145: 61. http://dx.doi.org/10.1016/j.jlumin.2013.07.020
Seminko V., Maksimchuk P., Bespalova I., Masalov A., Viagin O., Okrushko E., Kononets N., Malyukin Y. Defect and intrinsic luminescence of CeO2 nanocrystals. Physica Status Solidi B. 2017. 254(4): http://dx.doi.org/10.1002/pssb.201600488
Seminko V., Masalov A., Maksimchuk P., Klochkov V., Bespalova I., Viagin O., Malyukin Y. Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action. In: Nanomaterials for Security. (Springer, 2016). P. 149–157.
Malyukin Y., Klochkov V., Maksimchuk P., Seminko V., Spivak N. Oscillations of cerium oxidation state driven by oxygen diffusion in colloidal nanoceria (CeO2−x). Nanoscale Research Letters.2017. 12(1): 566. https://doi.org/10.1186/s11671-017-2339-7
Macdonald I.J., Dougherty T.J. Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines. 2001. 5(02): 105. https://doi.org/10.1002/jpp.328
Dolmans D.E., Fukumura D., Jain R.K. Photodynamic therapy for cancer. Nature Reviews Cancer. 2003. 3(5): 380. https://doi.org/10.1038/nrc1071
Chen W., Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology. 2006. 6(4): 1159. https://doi.org/10.1166/jnn.2006.327
Yefimova S.L., Tkacheva T.N., Maksimchuk P.O., Bespalova I.I., Hubenko K.O., Klochkov V.K., Sorokin A.V., Malyukin Y.V. GdVO4: Eu3+ nanoparticles–Methylene Blue complexes for PDT: Electronic excitation energy transfer study. Journal of Luminescence. 2017. 192: 975. https://doi.org/10.1016/j.jlumin.2017.08.044