Electromagnetic processes with high-energy “half-bare” particles
According to the materials of report at the meeting of the Presidium of the NAS of Ukraine, July 12, 2023
DOI:
https://doi.org/10.15407/visn2023.09.087Keywords:
high-energy particles, transition radiation, ionization energy lossAbstract
The article presents the results of studies of interference effects in various electromagnetic processes which take place at interaction of high-energy charged particles with matter. The considered effects are associated with manifestation of the so-called "half-bare" state of particles as well as ultra-small size of charged particle bunches. The main attention is paid to the processes of transition radiation and ionization energy loss, which are of great importance for detection of elementary particles and measurement and control of beam parameters at accelerators. It is shown that the mentioned effects can significantly change the characteristics of these processes within large distances along the direction of particle motion.
References
Feinberg E.L. High energy successive interactions. Sov. Phys. JETP. 1966. 23(1): 132—140.
Akhiezer A.I., Shul’ga N.F. High Energy Electrodynamics in Matter. Amsterdam: Gordon and Breach Publ., 1996.
Shul’ga N.F., Trofymenko S.V. High-energy wave packets. “Half-bare” electron. Journal of Kharkiv National University. Physical series "Nuclei, Particles, Fields". 2013. 1040: 59—67.
Landau L.D., Pomeranchuk I.Ya. Limits of applicability of the theory of electron bremsstrahlung and pair production at high energies. Dokl. Akad. Nauk SSSR. Ser. Fiz. 1953. 92: 535—536. (Collected papers of L.D. Landau. Ed. D. Ter Haar. Oxford: Pergamon Press, 1965. P. 589). https://doi.org/10.1016/C2013-0-01806-3
Migdal A.B. Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 1956. 103: 1811. https://doi.org/10.1103/PhysRev.103.1811
Ternovsky F.F. On the theory of radiative processes in piecewise homogeneous media. Sov. Phys. JETP. 1961. 12: 123.
Shul’ga N.F., Fomin S.P. Suppression of radiation in an amorphous medium and in a crystal. JETP Lett. 1978. 27: 117.
Artru X., Ray C. Interference and shadow effects in the production of light by charged particles in optical fibers. Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. 266: 3725. https://doi.org/10.1016/j.nimb.2008.03.083
Shul’ga N.F., Trofymenko S.V., Syshchenko V.V. On the transition radiation and bremsstrahlung from a relativistic electron with a nonequilibrium field. JETP Lett. 2011. 93: 1. https://doi.org/10.1134/S0021364011010061
Naumenko G., Popov Y., Shevelev M. Direct observation of a semi-bare electron Coulomb field recover. J. Phys.: Conf. Ser. 2012. 357: 012005. https://doi.org/10.1088/1742-6596/357/1/012005
Trofymenko S.V., Shul’ga N.F., Shchagin A.V. Diffracted x-ray transition radiation by a “half-bare” electron. Phys. Rev. Accel. Beams. 2019. 22: 024501. https://doi.org/10.1103/PhysRevAccelBeams.22.024501
Trofymenko S.V. K-shell ionization and characteristic x-ray radiation by high-energy electrons in multifoil targets. Phys. Rev. A. 2020. 102: 062804. https://doi.org/10.1103/PhysRevA.102.062804
Shul’ga N.F., Trofymenko S.V. On ionization energy losses of ultra-relativistic half-bare electron. Phys. Lett. A. 2012. 376: 3572. https://doi.org/10.1103/PhysRevA.102.062804
Kontorovich V.M., Trofymenko S.V. On the mystery of the interpulse shift in the Crab pulsar. J. Phys. Sci. Appl. 2017. 7(4): 11. https://doi.org/10.17265/2159-5348/2017.04.002
Fermi E. The ionization loss of energy in gases and in condensed materials. Phys. Rev. 1940. 57: 485. https://doi.org/10.1103/PhysRev.57.485
Trofymenko S.V., Nazhmudinov R.M., Shchagin A.V. et al. Formation region effects in x-ray transition radiation from 1 to 6 GeV electrons in multilayer targets. Nucl. Instrum. Methods Phys. Res., Sect. B. 2020. 476: 44. https://doi.org/10.1016/j.nimb.2020.04.033
Trofymenko S.V., Shul’ga N.F., Delerue N., Jenzer S., Khodnevych V., Migayron A. Proposal to observe half-bare electrons on 45-MeV linac. J. Phys.: Conf. Ser. 2017. 874: 012076. https://doi.org/10.1088/1742-6596/874/1/012076
Shul’ga N.F., Trofymenko S.V., Barsuk S.Ya., Bezshyyko O.A. On transition radiation by a low-energy relativistic “half-bare” electron. Eur. Phys. J. Plus. 2019. 134: 343. https://doi.org/10.1140/epjp/i2019-12870-0
Ogata A., Kondoh T., Norizawa K., Yang J., Yoshida Y., Kashiwagi S., Kanekoet T. Collective energy loss of attosecond electron bunches. Nucl. Instrum. Methods Phys. Res., Sect. A. 2011. 637: S95. https://doi.org/10.1016/j.nima.2010.02.031
Trofymenko S.V., Shul’ga N.F. Interference effect in the ionization loss of high-energy electron bunches. Phys. Lett. A. 2019. 383: 2561. https://doi.org/10.1016/j.physleta.2019.05.023
Trofymenko S.V., Shul’ga N.F. Energy loss by relativistic electron ensembles due to coherent excitation and ionization of atoms. Phys. Rev. Accel. Beams. 2020. 23: 084501. https://doi.org/10.1103/PhysRevAccelBeams.23.084501
Lindhard J. Influence of crystal lattice on motion of energetic charged particles. Danske Vid. Selsk. Mat. Fys. Medd. 1965. 34: 14.
Trofymenko S.V., Kyryllin I.V. On the ionization loss spectra of high-energy channeled negatively charged particles. Eur. Phys. J. C. 2020. 80: 689. https://doi.org/10.1140/epjc/s10052-020-8127-z