Electromagnetic processes with high-energy “half-bare” particles

According to the materials of report at the meeting of the Presidium of the NAS of Ukraine, July 12, 2023

Authors

  • Sergii V. Trofymenko Akhiezer Institute for Theoretical Physics of the National Science Center “Kharkiv Institute of Physics and Technology” of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-1263-4444

DOI:

https://doi.org/10.15407/visn2023.09.087

Keywords:

high-energy particles, transition radiation, ionization energy loss

Abstract

The article presents the results of studies of interference effects in various electromagnetic processes which take place at interaction of high-energy charged particles with matter. The considered effects are associated with manifestation of the so-called "half-bare" state of particles as well as ultra-small size of charged particle bunches. The main attention is paid to the processes of transition radiation and ionization energy loss, which are of great importance for detection of elementary particles and measurement and control of beam parameters at accelerators. It is shown that the mentioned effects can significantly change the characteristics of these processes within large distances along the direction of particle motion.

References

Feinberg E.L. High energy successive interactions. Sov. Phys. JETP. 1966. 23(1): 132—140.

Akhiezer A.I., Shul’ga N.F. High Energy Electrodynamics in Matter. Amsterdam: Gordon and Breach Publ., 1996.

Shul’ga N.F., Trofymenko S.V. High-energy wave packets. “Half-bare” electron. Journal of Kharkiv National University. Physical series "Nuclei, Particles, Fields". 2013. 1040: 59—67.

Landau L.D., Pomeranchuk I.Ya. Limits of applicability of the theory of electron bremsstrahlung and pair production at high energies. Dokl. Akad. Nauk SSSR. Ser. Fiz. 1953. 92: 535—536. (Collected papers of L.D. Landau. Ed. D. Ter Haar. Oxford: Pergamon Press, 1965. P. 589). https://doi.org/10.1016/C2013-0-01806-3

Migdal A.B. Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 1956. 103: 1811. https://doi.org/10.1103/PhysRev.103.1811

Ternovsky F.F. On the theory of radiative processes in piecewise homogeneous media. Sov. Phys. JETP. 1961. 12: 123.

Shul’ga N.F., Fomin S.P. Suppression of radiation in an amorphous medium and in a crystal. JETP Lett. 1978. 27: 117.

Artru X., Ray C. Interference and shadow effects in the production of light by charged particles in optical fibers. Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. 266: 3725. https://doi.org/10.1016/j.nimb.2008.03.083

Shul’ga N.F., Trofymenko S.V., Syshchenko V.V. On the transition radiation and bremsstrahlung from a relativistic electron with a nonequilibrium field. JETP Lett. 2011. 93: 1. https://doi.org/10.1134/S0021364011010061

Naumenko G., Popov Y., Shevelev M. Direct observation of a semi-bare electron Coulomb field recover. J. Phys.: Conf. Ser. 2012. 357: 012005. https://doi.org/10.1088/1742-6596/357/1/012005

Trofymenko S.V., Shul’ga N.F., Shchagin A.V. Diffracted x-ray transition radiation by a “half-bare” electron. Phys. Rev. Accel. Beams. 2019. 22: 024501. https://doi.org/10.1103/PhysRevAccelBeams.22.024501

Trofymenko S.V. K-shell ionization and characteristic x-ray radiation by high-energy electrons in multifoil targets. Phys. Rev. A. 2020. 102: 062804. https://doi.org/10.1103/PhysRevA.102.062804

Shul’ga N.F., Trofymenko S.V. On ionization energy losses of ultra-relativistic half-bare electron. Phys. Lett. A. 2012. 376: 3572. https://doi.org/10.1103/PhysRevA.102.062804

Kontorovich V.M., Trofymenko S.V. On the mystery of the interpulse shift in the Crab pulsar. J. Phys. Sci. Appl. 2017. 7(4): 11. https://doi.org/10.17265/2159-5348/2017.04.002

Fermi E. The ionization loss of energy in gases and in condensed materials. Phys. Rev. 1940. 57: 485. https://doi.org/10.1103/PhysRev.57.485

Trofymenko S.V., Nazhmudinov R.M., Shchagin A.V. et al. Formation region effects in x-ray transition radiation from 1 to 6 GeV electrons in multilayer targets. Nucl. Instrum. Methods Phys. Res., Sect. B. 2020. 476: 44. https://doi.org/10.1016/j.nimb.2020.04.033

Trofymenko S.V., Shul’ga N.F., Delerue N., Jenzer S., Khodnevych V., Migayron A. Proposal to observe half-bare electrons on 45-MeV linac. J. Phys.: Conf. Ser. 2017. 874: 012076. https://doi.org/10.1088/1742-6596/874/1/012076

Shul’ga N.F., Trofymenko S.V., Barsuk S.Ya., Bezshyyko O.A. On transition radiation by a low-energy relativistic “half-bare” electron. Eur. Phys. J. Plus. 2019. 134: 343. https://doi.org/10.1140/epjp/i2019-12870-0

Ogata A., Kondoh T., Norizawa K., Yang J., Yoshida Y., Kashiwagi S., Kanekoet T. Collective energy loss of attosecond electron bunches. Nucl. Instrum. Methods Phys. Res., Sect. A. 2011. 637: S95. https://doi.org/10.1016/j.nima.2010.02.031

Trofymenko S.V., Shul’ga N.F. Interference effect in the ionization loss of high-energy electron bunches. Phys. Lett. A. 2019. 383: 2561. https://doi.org/10.1016/j.physleta.2019.05.023

Trofymenko S.V., Shul’ga N.F. Energy loss by relativistic electron ensembles due to coherent excitation and ionization of atoms. Phys. Rev. Accel. Beams. 2020. 23: 084501. https://doi.org/10.1103/PhysRevAccelBeams.23.084501

Lindhard J. Influence of crystal lattice on motion of energetic charged particles. Danske Vid. Selsk. Mat. Fys. Medd. 1965. 34: 14.

Trofymenko S.V., Kyryllin I.V. On the ionization loss spectra of high-energy channeled negatively charged particles. Eur. Phys. J. C. 2020. 80: 689. https://doi.org/10.1140/epjc/s10052-020-8127-z

Published

2023-09-26