Neutrinos are massive

Nobel Prize in Physics 2015

Authors

  • F.A. Danevich Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv
  • V.V. Kobychev Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv
  • V.I. Tretyak Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2016.01.020

Keywords:

neutrinos, weak interaction, neutrino mass, neutrino astrophysics, low-background experiments

Abstract

The Nobel Prize in Physics 2015 was awarded jointly to Arthur B. McDonald (Canada) and Takaaki Kajita (Japan) "for the discovery of neutrino oscillations, which shows that neutrinos have mass." Observation of the neutrino oscillations is the first effect beyond the Standard Model of elementary particles, whose role for the further development of science is exceptionally important. The main steps of the neutrino and the weak interaction investigations, in particular of those awarded by the Nobel Prize in 2015, are presented. The contribution of the Ukrainian scientists to neutrino researches, prospects for their participation in the current and future international neutrino projects are briefly discussed.

References

Lee T.D., Yang C.N. Question of parity conservation in weak interactions. Phys. Rev. 1956. 104(1): 254. http://doi.org/10.1103/PhysRev.104.254

Wu C.S., Ambler E., Hayward R.W., Hoppes D.D., Hudson R.P. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 1957. 105(4): 1413. http://doi.org/10.1103/PhysRev.105.1413

Garwin R.L., Lederman L.M., Weinrich M. Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon. Phys. Rev. 1957. 105(4): 1415. http://doi.org/10.1103/PhysRev.105.1415

Strumia A., Vissani F. Neutrino masses and mixings and... arXiv:hep-ph/0606054v3, 2010.

Lubimov V.A., Novikov E.G., Nozik V.Z., Tretyakov E.F., Kosik V.S. An estimate of the vb mass from the ß-spectrum of tritium in the valine molecule. Phys. Lett. B. 1980. 94(2): 266. http://doi.org/10.1016/0370-2693(80)90873-4

Robertson R.G.H., Bowles T.J., Stephenson G.J., Wark D.L., Wilkerson J.F., Knapp D.A. Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium. Phys. Rev. Lett. 1991. 67(8): 957. http://doi.org/10.1103/PhysRevLett.67.957

Kawakami H. et al. New upper bound on the electron anti-neutrino mass. Phys. Lett. B. 1991. 256(1): 105. http://doi.org/10.1016/0370-2693(91)90226-G

Holzschuh E., Fritschi M., Kündig W. Measurement of the electron neutrino mass from tritium ß-decay. Phys. Lett. B. 1992. 287(4): 381. http://doi.org/10.1016/0370-2693(92)91000-Y

Chengrui C. Tsohsiu H., Dongqi L., Yajun M., Shiping C., Hanchenget S. A possible explanation of the negative values of m2vb obtained from the ß spectrum shape analyses. Int. J. Mod. Phys. A. 1995. 10(19): 2841. http://doi.org/10.1142/S0217751X95001340

Stoeffl W., Decman D.J. Anomalous structure in the ß decay of gaseous molecular tritium. Phys. Rev. Lett. 1995. 75(18): 3237. http://doi.org/10.1103/PhysRevLett.75.3237

Aseev V.N. et al. Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D. 2011. 84(11): 112003. http://doi.org/10.1103/PhysRevD.84.112003

Kraus Ch. et al. Final results from phase II of the Mainz neutrino mass search in tritium b decay. Eur. Phys. J. C. 2005. 40(4): 447. http://doi.org/10.1140/epjc/s2005-02139-7

Drexlin G., Hannen V., Mertens S., Weinheimer C. Current Direct Neutrino Mass Experiments. Adv. High Energy Phys. 2013. 2013: 293986.

Bilenky S.M. The history of neutrino oscillations. Phys. Scripta. 2005. T121: 17. http://doi.org/10.1088/0031-8949/2005/T121/001

Mikheev S.P., Smirnov A.Yu. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Soviet Journal of Nuclear Physics. 1985. 42: 913.

Wolfenstein L. Neutrino oscillations in matter. Phys. Rev. D. 1978. 17(9): 2369. http://doi.org/10.1103/PhysRevD.17.2369

Wolfenstein L. Neutrino oscillations and stellar collapse. Phys. Rev. D. 1979. 20(10): 2634. http://doi.org/10.1103/PhysRevD.20.2634

Fukuda Y. et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998. 81(8): 1562. http://doi.org/10.1103/PhysRevLett.81.1562

Ahmad Q. et al. Measurement of the Rate of νe + d → p + p + e− Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001. 87(7): 071301. http://doi.org/10.1103/PhysRevLett.87.071301

McDonald A.B., Klein J.R., Wark D.L. Solving the Solar neutrino problem. Scientific American. 2006. 15: 22. http://doi.org/10.1038/scientificamerican0206-22sp

Mohapatra R.N. et al. Theory of neutrinos: a white paper. Rep. Prog. Phys. 2007. 70(11): 1757. http://doi.org/10.1088/0034-4885/70/11/R02

Smirnov A. The landscape of neutrino physics. Talk at TAUP 2015. (Sept. 7–12, 2015, Turin, Italy).

Bellini G. et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature. 2014. 512: 383. http://doi.org/10.1038/nature13702

Stancil D.D. et al. Demonstration of communication using neutrinos. Mod. Phys. Lett. A. 2012. 27(12): 1250077. http://doi.org/10.1142/S0217732312500770

Danevich F.A. Investigation of neutrino and weak interactions in double beta decay of atomic nuclei. Visn. Nac. Akad. Nauk Ukr. 2015. (9): 39.

Published

2016-01-21

How to Cite

Danevich, F., Kobychev, V., & Tretyak, V. (2016). Neutrinos are massive: Nobel Prize in Physics 2015. Visnyk of the National Academy of Sciences of Ukraine, (1), 20–29. https://doi.org/10.15407/visn2016.01.020