How cells manage to keep dna molecules undamaged or why does life exist on Earth?
Nobel Prize in Chemistry 2015
DOI:
https://doi.org/10.15407/visn2016.01.030Keywords:
DNA damage, DNA repair, Nobel PrizeAbstract
On October 7, 2015 in Stockholm, the capital of Sweden in the frame of the 114th Nobel Week the Nobel Committee of the Royal Swedish Academy has awarded the Nobel Prize in Chemistry 2015 to Tomas Lindahl, Paul Modric and Aziz Sancar. This award is especially prestigious because the Nobel Prize founder was Swedish entrepreneur and inventor Alfred Nobel (1833–1896) who himself was a chemist and who got his fortune due to the dynamite invention. Chemistry was second after physics, which was mentioned in his testament.
References
Forecasting the 2015 Nobel Prize winner. http://thomsonreuters.com/en/press-releases/2015/september/thomson-reuters-forecasts-nobel-prize-winners.html.
The 2015 Nobel Prize in Chemistry. Press Release. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/press.html.
Watson J.D., Crick F.H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953. 18: 123. http://doi.org/10.1101/SQB.1953.018.01.020
De Bont R., van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004. 19(3): 169. http://doi.org/10.1093/mutage/geh025
DNA damage (naturally occurring). https://en.wikipedia.org/wiki/DNA_damage_(naturally_occurring)#cite_note-31.
Gustafsson C.M. Mechanistic studies of DNA repair. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advanced-chemistryprize2015.pdf.
Kelner A. Effect of visible light on the recovery of Streptomyces griseus conidia from ultra-violet irradiation injury. PNAS. 1949. 35: 73. http://doi.org/10.1073/pnas.35.2.73
Dulbecco R. Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bacteriol. 1950. 59(3): 329.
Rupert C.S. Photoreactivation of transforming DNA by an enzyme from bakers’ yeast. J. Gen. Physiol. 1960. 43(3): 573. http://doi.org/10.1085/jgp.43.3.573
Sancar A., Rupert C.S. Cloning of the phr gene and amplification of photolyase in Escherichia coli. Gene. 1978. 4(4): 295. http://doi.org/10.1016/0378-1119(78)90047-1
Park H.W., Kim S.T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995. 268(5219): 1866. http://doi.org/10.1126/science.7604260
Setlow R.B., Carrier W.L. The disappearance of thymine dimers from DNA: an error-correcting mechanism. PNAS. 1964. 51: 226. http://doi.org/10.1073/pnas.51.2.226
Boyce R.P., Howard-Flanders P. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. PNAS. 1964. 51: 293. http://doi.org/10.1073/pnas.51.2.293
Pettijohn D., Hanawalt P. Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J. Mol. Biol. 1964. 9: 395. http://doi.org/10.1016/S0022-2836(64)80216-3
Howard-Flanders P., Boyce R.P., Theriot L. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics. 1966. 53(6): 1119.
Sancar A., Hack A.M., Rupp W.D. Simple method for identification of plasmid-coded proteins. J. Bacteriol. 1979. 137(1): 692.
Sancar A., Rupp W.D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983. 33(1): 249. http://doi.org/10.1016/0092-8674(83)90354-9
Petit C., Sancar A. Nucleotide excision repair: from E. coli to man. Biochimie. 1999. 81(1–2): 15. http://doi.org/10.1016/S0300-9084(99)80034-0
Kato T.Jr., Todo T., Ayaki H., Ishizaki K., Morita T., Mitra S., Ikenaga M. Cloning of a marsupial DNA photolyase gene and the lack of related nucleotide sequences in placental mammals. Nucleic Acids Res. 1994. 22(20): 4119. http://doi.org/10.1093/nar/22.20.4119
Sancar A. Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 2004. 279(33): 34079.http://doi.org/10.1074/jbc.R400016200
Wagner R.Jr., Meselson M. Repair tracts in mismatched DNA heteroduplexes. PNAS. 1976. 73(11): 4135. http://doi.org/10.1073/pnas.73.11.4135
Pukkila P.J., Peterson J., Herman G., Modrich P., Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983. 104(4): 571.
Lahue R.S, Au K.G., Modrich P. DNA mismatch correction in a defined system. Science. 1989. 245(4914): 160. http://doi.org/10.1126/science.2665076
Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974. 13(16): 3405. http://doi.org/10.1021/bi00713a035
Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cystosine residues. PNAS. 1974. 71(9): 3649. http://doi.org/10.1073/pnas.71.9.3649
Lindahl T. DNA glycosylases in DNA repair. Basic Life Sci. 1986. 38: 335. http://doi.org/10.1007/978-1-4615-9462-8_36
Schiller C.B., Seifert F.U., Linke-Winnebeck C., Hopfner K.P. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb. Perspect. Biol. 2014. 6(10): a017962. http://doi.org/10.1101/cshperspect.a017962
Waters C.A., Strande N.T., Wyatt D.W., Pryor J.M., Ramsden D.A. Nonhomologous end joining: a good solution for bad ends. DNA Repair. 2014. 17: 39. http://doi.org/10.1016/j.dnarep.2014.02.008
Sfeir A., Symington L.S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 2015. 40(11): 701. http://doi.org/10.1016/j.tibs.2015.08.006
Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975. 5A: 355. http://doi.org/10.1007/978-1-4684-2895-7_48
Witkin E.M. Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system ("SOS repair") and its anomalous expression in these strains. Genetics. 1975. 79: 199.
Shinagawa H. SOS response as an adaptive response to DNA damage in prokaryotes. EXS. 1996. 77: 221. http://doi.org/10.1007/978-3-0348-9088-5_14
Knoch J., Kamenisch Y., Kubisch C., Berneburg M. Rare hereditary diseases with defects in DNA-repair. Eur. J. Dermatol. 2012. 22(4): 443.
Cleaver J.E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968. 218(5142): 652. http://doi.org/10.1038/218652a0
Parsons R., Li G.M., Longley M.J., Fang W.H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K.W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993. 75(6): 1227. http://doi.org/10.1016/0092-8674(93)90331-J
Chen L., Elahi A., Pow-Sang J., Lazarus P., Park J. Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J. Urol. 2003. 170(6): 2471. http://doi.org/10.1097/01.ju.0000087498.23008.bb
FDA approves Lynparza to treat advanced ovarian cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427554.htm.
Zetsche B., Gootenberg J., Abudayyeh O., Slaymaker I.M., Makarova K., Essletzbichler P., Volz S., Joung J., van der Oost J., Regev A., Koonin E., Zhang F. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015. 163(3): 759. http://doi.org/10.1016/j.cell.2015.09.038
http://www.gazeta.ru/science/2015/10/07_a_7801073.shtml.
Meng H., Cao Y., Qin J., Song X., Zhang Q., Shi Y., Cao L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 2015. 11(5): 604. http://doi.org/10.7150/ijbs.11218
Franchini D.M., Petersen-Mahrt S.K. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics. 2014. 6(4): 427. http://doi.org/10.2217/epi.14.35
Rada C., Williams G.T., Nilsen H., Barnes D.E., Lindahl T., Neuberger M.S. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 2002. 12(20): 1748. http://doi.org/10.1016/S0960-9822(02)01215-0
Kornberg A. Some aspects of the enzymatic replication of DNA: the repair of partially single-stranded templates. Proc. Nat. Cancer Conf. 1964. 5: 735.