Investigation of neutrino and weak interactions in double beta decay of atomic nuclei

According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, July 1, 2015

Authors

  • F.A. Danevich Institute for Nuclear Research of National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2015.09.039

Keywords:

neutrino, double beta decay, low-background experiments, deep purification of materials, scintillation detector

Abstract

Double beta decay is a unique way to study the nature and properties of neutrinos and weak interaction, to test the Standard Model of particles. Investigations of neutrinoless double beta decay require sensitive experimental approaches to detect extremely rare nuclear decays with the half-lives on the level of 1026—1028 years. Ukraine has a significant potential to participate in the next generation large-scale experiments thanks to developed methods of ultra-low background nuclear spectrometry, deep purification of materials, crystal growth technologies.

References

http://www.sciencemag.org/site/feature/misc/webfeat/125th/.

Mohapatra R.N. et al. Theory of neutrinos: A white paper. Rep. Prog. Phys. 2007. 70(11): 1757–867. http://doi.org/10.1088/0034-4885/70/11/R02

Vergados J.D., Ejiri H., Šimkovic F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012. 75(10): 106301. http://doi.org/10.1088/0034-4885/75/10/106301

Barea J., Kotila J., Iachello F. Limits on Neutrino Masses from Neutrinoless Double-b Decay. Phys. Rev. Lett. 2012. 109(4): 042501. http://doi.org/10.1103/PhysRevLett.109.042501

Rodejohann W. Neutrino-less double beta decay and particle physics. J. Phys. G. 2012. 39(12): 124008. http://doi.org/10.1088/0954-3899/39/12/124008

Deppisch F.F., Hirsch M. Päs H. Neutrinoless double-beta decay and physics beyond the standard model. J. Phys. G. 2012. 39(12): 124007. http://doi.org/10.1088/0954-3899/39/12/124007

Bilenky S.M., Giunti C. Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A. 2015. 30(4): 1530001. http://doi.org/10.1142/S0217751X1530001X

Danevich F.A., Georgadze A.Sh., Kobychev V.V., Kropivyansky B.N., Nikolaiko A.S., Ponkratenko O.A., Tretyak V.I., Zdesenko S.Yu., Zdesenko Yu.G., Bizzeti P.G., Fazzini T.F., Maurenzig P.R. Search for 2b decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C. 2003. 68(3): 035501. http://doi.org/10.1103/PhysRevC.68.035501

Belli P. et al. New observation of 2ν2β decay of 100Mo to the 0+1 level of 100Ru in the ARMONIA experiment. Nucl. Phys. A. 2010. 846: 143–156. http://doi.org/10.1016/j.nuclphysa.2010.06.010

Danevich F.A., Kobychev V.V., Ponkratenko O.A., Tretyak V.I., Zdesenko Yu.G. Quest for double beta decay of 160Gd and Ce isotopes. Nucl. Phys. A. 2001. 694: 375–391. http://doi.org/10.1016/S0375-9474(01)00983-6

Drexlin G., Hannen V., Mertens S., Weinheimer C. Current Direct Neutrino Mass Experiments. Adv. High Energy Phys. 2013. ID 293986.

Abazajian K.N. et al. Cosmological and astrophysical neutrino mass measurements. Astropart. Phys. 2011. 35(4): 177–184. http://doi.org/10.1016/j.astropartphys.2011.07.002

Zdesenko Yu. Colloquium: The future of double b decay research. Rev. Mod. Phys. 2002. 74(3): 663. http://doi.org/10.1103/RevModPhys.74.663

Belli P. et al. Development of enriched 106CdWO4 crystal scintillators to search for double b decay processes in 106Cd. Nucl. Instr. Meth. A. 2010. 615(3): 301–06. http://doi.org/10.1016/j.nima.2010.01.081

Barabash A.S. et al. Low background detector with enriched 116CdWO4 crystal scintillators to search for double b decay of 116Cd. JINST. 2011. 6: P08011.

Bernabey R. et al. Production of high-pure Cd and 106Cd for CdWO4 and 106CdWO4 scintillators. Metallofizika i Noveishije Tekhnologii. 2008. 30: 477 [in Russian].

Belli P. et al. Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator. Phys. Rev. C. 2012. 85(3): 044610. http://doi.org/10.1103/PhysRevC.85.044610

Polischuk O.G. et al. Investigation of Double Beta Decay of 116Cd with the Help of Enriched 116CdWO4 Crystal Scintillators: Proc. Conf. MEDEX’15. http://doi.org/10.1063/1.4934906

Gironi L. et al. Performance of ZnMoO4 crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum. JINST. 2010. 5: P11007.

Barinova O.P. et al. First test of Li2MoO4 crystal as a cryogenic scintillating bolometer. Nucl. Instr. Meth. A. 2010. 613: 54. http://doi.org/10.1016/j.nima.2009.11.059

Armengaud E. et al. Development and underground test of radiopure ZnMoO4 scintillating bolometers for the LUMINEU 0n2b project. JINST. 2015. 10: P05007.

Bekker T.B. et al. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for netrinoless double beta decay of 100Mo. Astropart. Phys. 2016. 72: 38. http://doi.org/10.1016/j.astropartphys.2015.06.002

Beeman J.W. et al. A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers. Phys. Lett. B. 2012. 710(2): 318. http://doi.org/10.1016/j.physletb.2012.03.009

Barabash A.S. et al. Enriched Zn100MoO4 scintillating bolometers to search for 0ν2β decay of 100Mo with the LUMINEU experiment. Eur. Phys. J. C. 2014. 74: 3133. http://doi.org/10.1140/epjc/s10052-014-3133-7

Kim G.B. et al. A CaMoO4 Crystal Low Temperature Detector for the AMoRE Neutrinoless Double Beta Decay Search. Adv. High Energy Phys. 2015. ID 817530.

Chernyak D.M., Danevich F.A., Giuliani A., Olivieri E., Tenconi M., Tretyak V.I. Random coincidence of 2ν2β decay events as a background source in bolometric 0ν2β decay experiments. Eur. Phys. J. C. 2012. 72: 1989. http://doi.org/10.1140/epjc/s10052-012-1989-y

Chernyak D.M., Danevich F.A., Giuliani A., Mancuso M., Nones C., Olivieri E., Tenconi M., Tretyak V.I. Rejection of randomly coinciding events in ZnMoO4 scintillating bolometers. Eur. Phys. J. C. 2014. 74: 2913. http://doi.org/10.1140/epjc/s10052-014-2913-4

Chauveau E. et al. SuperNEMO Project Status. AIP Conf. Proc. 2009. 1180: 26. http://doi.org/10.1063/1.3266098

Wang G. et al. CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle Identification. arXiv:1504.03599v1.

Wang G. et al. R&D towards CUPID (CUORE Upgrade with Particle IDentication). arXiv:1504.03612v1.

Published

2015-09-26