Nanocarbon: pharmacological and toxicological properties

Authors

  • I.S. Chekman Bogomolets National Medical University, Kyiv
  • N.A. Gorchakova Bogomolets National Medical University, Kyiv
  • K.B. Raslin Bogomolets National Medical University, Kyiv

DOI:

https://doi.org/10.15407/visn2015.07.041

Keywords:

nanocarbon, graphene, fullerenes, carbon nanotubes, nanocomposites of carbon with metals, toxicity of the nanocarbon compounds

Abstract

This article lists some of the allotropes of carbon, presents their descriptions and analyzes their properties. The data about the rational use of nanocarbon in scientific and technical applications is summarized. Special attention is paid to the aspects of biomedical use of the nanocarbon compounds. The history of their discovery and the ways of further development are also presented. The article also touches upon the issue of the necessity of the evaluation of the nanocarbon compounds toxicity for living systems.

References

Chekman I.S., Ulberg Z.R., Malanchuk V.O. Nanoscience, Nanobiology, Nanopharmacy. (Kyiv, Poligraf+, 2012). [in Ukrainian].

Nebogatikova N.A., Antonova I.V., Prinz V.Ya., Volodin V.A., Zatsepin D.A., Kurmaev E.Z., Zhidkov I.S., Cholakh S.O. Nanotechnologies in Russia. 2014. 9(1–2): 51–59. http://doi.org/10.1134/S1995078014010108

Shpak A.P., Chekhun V.F. (eds.). Nanomaterials and Nanocomposites in Medicine, Biology, Ecology. (Kyiv: Naukova dumka, 2011). [in Russian].

Chekman I.S., Malanchuk V.O, Rybachuk A.V. Basic Nanomedicine. (Kyiv: Logos, 2011). [in Ukrainian].

Chesnokov V.V., Buyanov R.A. Membrany. 2005. 4: 75–79 [in Russian].

Lee J.H., Loya P.E., Lou J., Thomas E.L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014. 346(6213): 1092–96. http://doi.org/10.1126/science.1258544

Novoselov K.S., Falko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012. 490(192): 192–200. http://doi.org/10.1038/nature11458

Nair R.R., Ren W., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S., Katsnelson M.I., Cheng H.M., Strupinski W., Bulusheva L.G., Okotrub A.V., Grigorieva I.V., Grigorenko A.N., Novoselov K.S., Geim A.K. Fluorographene: A two-dimensional counterpart of teflon. Small. 2010. 6(24): 2877–84. http://doi.org/10.1002/smll.201001555

Bendjemil B., Lankar A., Messadi D., Vrel D. Pharmacological molecule based on nanocarbon container encapsulated ferromagnet by combustion synthesis for cancer therapy. Univ. J. Chem. 2014. 2(3): 30–39.

Chen S., Zhu J.W., Wang X. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010. 114: 11829–34. http://doi.org/10.1021/jp1048474

Antonova I.V., Mutilin S.V., Seleznev V.A., Soots R.A., Volodin V.A., Prinz V.Y. Extremely high response of electrostatically exfoliated few layer graphene to ammonia adsorption. Nanotechnology. 2011. 22(28): 285502. http://doi.org/10.1088/0957-4484/22/28/285502

Baby T.T., Aravind S.S.J., Arockiadoss T., Rakhi R.B., Ramaprabhu S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B. 2010. 145: 71–77. http://doi.org/10.1016/j.snb.2009.11.022

Cheng S.-H., Zou K., Okino F., Gutierrez H.R., Gupta A., Shen N., Eklund P.C., Sofo J.O., Zhu J. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. J. Phys. Rev. B. 2010. 81: 205435. http://doi.org/10.1103/PhysRevB.81.205435

Tyagi M.G., Albert A.P., Tyagi V., Hema R. Graphene nanomaterials and applications in bio-medical sciences. World J. Pharm. Pharm. Sci. 2013. 3(1): 339–45.

Li D., Muller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008. 3: 101–105. http://doi.org/10.1038/nnano.2007.451

Chng E.L.K., Pumera M. Toxicity of graphene related materials and transition metal dichalcogenides. RSC Advances. 2015. 5(4): 3074–80. http://doi.org/10.1039/C4RA12624F

Saxena M., Sarkar S. Involuntary graphene intake with food and medicine. The Royal Society of Chemistry. 2014. 4: 30162–67. http://doi.org/10.1039/c4ra04022h

Saxena M., Maitya S., Sarkar S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Advances. 2014. 4(75): 39948–54. http://doi.org/10.1039/C4RA06535B

Chekman I.S. Nanopharmacology. (Kyiv: Zadruga, 2011). [in Ukrainian].

Donaldson K., Aitken R., Tran L. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 2006. 92(1): 5–22. http://doi.org/10.1093/toxsci/kfj130

Guldi D.M., Prato M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000. 33(10): 695–703. http://doi.org/10.1021/ar990144m

Zhai H.J., Zhao Y.F., Li W.L., Chen Q., Bai H., Hu H.-S., Piazza Z.A., Tian W.-J., Lu H.-G., Wu Y.-B., Mu Y.-W., Wei G.-F., Liu Z.-P., Li J., Li S.-D., Wang L.-S. Observation of an all-boron fullerene. Nature Chemistry. 2014. 6: 727–31. http://doi.org/10.1038/nchem.1999

Satoh M., Takayanagi I. Pharmacological studies on fullerene [C60], a novel carbon allotrope and its derivatives. J. Pharmacol. Sci. 2006. 100(5): 513–18. http://doi.org/10.1254/jphs.CPJ06002X

Nakamura F., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 2003. 3(11): 807–15. http://doi.org/10.1021/ar030027y

Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005. 5(12): 2578–85. http://doi.org/10.1021/nl051866b

Manzetti S., Behzadi H., Andersen O., van der Spoe D. Fullerenes toxicity and electronic properties. Environ. Chem. Lett. 2013. 11: 105–18. http://doi.org/10.1007/s10311-012-0387-x

Simate G.S., Yah C.S. The use of carbon nanotubes in medical applications – is it a success story? Occup. Med. Health. 2014. 2(1): 146–47.

Lacerda L., Bianco A., Prato M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006. 58(14): 1460–70. http://doi.org/10.1016/j.addr.2006.09.015

Bendjemil B. Electronic and optical properties of the express purified SWCNTs produced by HiPCO process. Int. J. Nanoelectr. Mater. Sci. 2009. 2: 173–82.

Banerjee S., Khan M.G., Wong S.S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003. 9(9): 1898–908. http://doi.org/10.1002/chem.200204618

Kam N.W., Liu Z., Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005. 127: 12492–93. http://doi.org/10.1021/ja053962k

Hillebrenner H., Buyukserin F., Stewart J.D., Martin C.R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine. 2006. 1(1): 39–50. http://doi.org/10.2217/17435889.1.1.39

Jain K.K. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 2008. 17(2): 89–101. http://doi.org/10.1159/000112961

Pastorin G., Kostarelos K., Prato M., Bianco A. Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J. Biomed. Nanotechnol. 2005. 1: 1–10. http://doi.org/10.1166/jbn.2005.017

Charlier J.C., Blasé X., Roche S. Electronic and transport properties of nanotubes. Rev. Modern Phys. 2007. 79(2): 677–732. http://doi.org/10.1103/RevModPhys.79.677

Qiang Y., Antony J., Sharma A., Nutting J., Sikes D., Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res. 2006. 8: 489–96. http://doi.org/10.1007/s11051-005-9011-3

Dąbrowska A., Huczko A., Soszyński M., Bendjemil B., Micciulla F., Sacco I., Coderoni L., Bellucci S. Ultra-fast efficient synthesis of one-dimensional nanostructures. Phys. Status Solidi B. 2011. 248(11): 2704–07. http://doi.org/10.1002/pssb.201100054

Wen W., Wu J. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Advances. 2014. 4(101): 58090–100. http://doi.org/10.1039/C4RA10145F

Chekhun V., Gorobets S., Gorobets O., Demyanenko I. Magnetic nanostructures in neoplasm cells. Herald of the National Academy of Sciences of Ukraine. 2011. 11: 13–20 [in Ukrainian].

Chen S., Li Y., Guo C., Wang J., Ma J., Liang X., Yang L.R,. Liu H.Z. Temperature-Responsive Magnetite / PEO–PPO–PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir. 2007. 23: 12669–76. http://doi.org/10.1021/la702049d

Shin T.H., Choi Y., Kim S., Cheon J. Recent advances in magnetic nanoparticles-based multi-modal imaging. Chem. Soc. Rev. 2015. 10: 315–56. http://doi.org/10.1039/c4cs00345d

Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomedicine. 2011. 6: 2963–79.

Al Faraj A., Shaik A.P., Shaik A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomedicine. 2015. 10: 157–68.

Drake P., Cho H.J., Shih P.S. Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 2007. 17: 4914–18. http://doi.org/10.1039/b711962c

Abaeva L.F., Shumskiy V.I., Petritskaya E.N. Almanakh klinicheskoy meditsiny (Medical Almanac). 2010. 22: 10 [in Russian].

Latyshevskaya N.I., Strekalova A.S. Vestnik. Volgogradskogo Universiteta. Ser. 3. 2011. 3(1): 224 [in Russian].

Karkishchenko N.N. Biomeditsina (Biomedicine). 2009. 1(1): 5 [in Russian].

Rybalkin S.P., Mikhina L.V., Onatskiy N.M. Prikladnaya toksikologiya. 2013. 4(1): 32 [in Russian].

Gusev A.A., Rodayev V.V., Vasyukova I.A. Vestnik Tambovskogo Universiteta. 2013. 18(1): 299 [in Russian].

Ziganshin A.U., Ziganshina L.E. Kazanskiy meditsinskiy zhurnal. 2008. 89(1): 1 [in Russian].

Fatkhutdinova L.M., Zalyalov R.R., Oslopov V.N. Kazanskiy meditsinskiy zhurnal. 2009. 90(4): 578 [in Russian].

Velichkovskiy B.T. Bull. VSNC SO RAMN. 2009. 4: 72 [in Russian].

Khaliullin T.O., Kisin Ye.R., Zalyalov R.R. Toksikologicheskiy vestnik. 2013. 4: 17 [in Russian].

Galano A. Carbon nanotubes: promising agents against free radicals. Nanoscale. 2010. 2: 373–80. http://doi.org/10.1039/b9nr00364a

Erdely A., Dahm M., Chen B.T. et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Particle and Fibre Toxicology. 2013. 10: 53. http://doi.org/10.1186/1743-8977-10-53

Published

2015-07-26