Ordered adsorption of organic molecules on inorganic nanoparticles

Authors

  • Yu.V. Malyukin Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov
  • S.L. Yefimova Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov
  • Т.N. Tkacheva Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov
  • G.V. Grygorova Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov

DOI:

https://doi.org/10.15407/visn2015.06.034

Keywords:

nanoparticles, dye, adsorption, hybrid organic-inorganic complexes

Abstract

The modern state and prospects of creation of the novel “nanocarriers” medicine are shown in the article. The results of the authors’ own research on the use of inorganic orthovanadate nanocrystals ReVO4:Eu3+ (Re = Y, Gd, La) with different form-factors as nanoscale carrier of active organic compound are presented. Interaction between nanoparticles ReVO4:Eu3+ and some cationic polymethine dyes has been studied by spectrophotometric method. It was shown that in water solutions there is sorption of dye molecule on the surface of nanoparticles. Depending on the structure of molecule and its tendency to aggregating, increase of local concentration of dyes in a near-surface layer of nanoparticle can reduce to ordered aggregating of dye molecules and formation of complicated complexes «inorganic nanoparticle — dye aggregates». Inorganic nanoparticles play role of unique «templates» for formation of dye aggregates, and the degree of ordering of molecules in an aggregate can be managed by nanoparticles’ form-factor.

References

Brayden D.J. Controlled release technologies for drug delivery. Drug Discovery Today. 2003. 8(21): 976–78. http://doi.org/10.1016/S1359-6446(03)02874-5

Parveen S., Mishra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012. 8(2): 147–66. http://doi.org/10.1016/j.nano.2011.05.016

Hunziker P. Nanomedicine: shaping the future of medicine. Eur. J. Nanomedicine. 2009. 2(1):4. http://doi.org/10.1515/EJNM.2009.2.1.4

Hunziker P. Nanomedicine – the challenge of complexity. Eur. J. Nanomedicine. 2009. 2(2): 3–5. http://doi.org/10.1515/EJNM.2009.2.2.3

Soloviev M. Nanobiotechnology today: focus on nanoparticles medicine. 2007. J. Nanobiotechnol. 5: 11. http://doi.org/10.1186/1477-3155-5-11

Salata O.V. Applications of nanoparticles in biology and medicine. 2004. J. Nanobiotechnol. 2: 3. http://doi.org/10.1186/1477-3155-2-3

Torchilin V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007. 9(2): E128–47. http://doi.org/10.1208/aapsj0902015

Grossman J.H., McNeil S.E. Nanotechnology in cancer medicine. Physics Today. 2012. 65: 38–42. http://doi.org/10.1063/PT.3.1678

Nichols J.W., Bae Y.H. Odyssey of cancer nanoparticles: from injection site to site of action. Nano Today. 2012. 7(6): 606–18. http://doi.org/10.1016/j.nantod.2012.10.010

Bamrungsap S., Zhao Z., Chen T. Wang L., Li C., Fu T., Tan W. Nanotechnology in therapeutics: focus on nanoparticles as drug delivery system. Nanomedicine. 2012. 7(8): 1253–71. http://doi.org/10.2217/nnm.12.87

Freitas A. Nanotechnology, nanomedicine and nanosurgery. Int. J. Surgery. 2005. 3(4): 242–46. http://doi.org/10.1016/j.ijsu.2005.10.007

Liu Y., Niu T.-S., Zhang L., Yang J.-Sh. Review on nano-drugs. Nat. Sci. 2010. 2(1): 41–48. http://doi.org/10.4236/ns.2010.21006

Torchilin V.P. Nanoparticles as Drug Carriers (London, Imperial College Press, 2006).

Petros R., DeSimone J.M. Strategies in design of nanoparticles for therapeutic applications. Nat. Rev. Drug Disc. 2010. 9(8): 615–27. http://doi.org/10.1038/nrd2591

Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug. Deliv. Rev. 2010. 62(11): 1064–79. http://doi.org/10.1016/j.addr.2010.07.009

Klochkov V., Kavok N., Grygorova G., Sedyh O., Malyukin Yu. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Mater. Sci. Eng. C. 2013. 33(5): 2708–12. http://doi.org/10.1016/j.msec.2013.02.046

Klochkov V.K., Masalov A.A., Kavok N.S., Malyukin Yu.V., Vyagin O.G. Colloidal synthesis and properties of lanthanide orthophosphate nanophosphors. Funct. Mater. 2009. 16(4): 466–69.

Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. Characteristics of nLnVO4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectr. 2012. 79(5): 726–30. http://doi.org/10.1007/s10812-012-9662-7

Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A. 2012. 409: 176–82. http://doi.org/10.1016/j.colsurfa.2012.06.019

Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-l. Proc. Natl. Acad. Sci. USA. 1991. 88(9): 3671–75. http://doi.org/10.1073/pnas.88.9.3671

Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess DΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997. 411, 77–82. http://doi.org/10.1016/S0014-5793(97)00669-8

Jones R.M., Lu L., Helgeson R., Bergstedt T.S., McBranch D.W.,Whitten D.G. Building highly sensitive dye assemblies for biosensing from molecular building blocks. Proc. Natl. Acad. Sci. USA. 2001. 98(26), 14769–72. http://doi.org/10.1073/pnas.251555298

Legrand O., Perrot J.-Y., Simonin G., Baudard M., Marie J.P. JC-1: a very sensitive fluorescent probe to test Pgp activity in adult acute myeloid leukemia. Blood. 2001. 97(2), 502–08. http://doi.org/10.1182/blood.V97.2.502

Kasha M. Molecular excitons in small aggregates. In: Spectroscopy of the excited state (NY, Premium Press, 1976). http://doi.org/10.1007/978-1-4684-2793-6_12

McRae E.G., Kasha M. Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys. 1958. 28: 721–22. http://doi.org/10.1063/1.1744225

Kasha M., Rawls H.R., El-Bayoumi M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965. 11: 371–92. http://doi.org/10.1351/pac196511030371

Czikkely V., Forsterling H.D., Kuhn H. Extended dipole model for aggregates of dye molecules.Chem. Phys. Lett. 1970. 6: 207–10. http://doi.org/10.1016/0009-2614(70)80220-2

Hassanzader A., Zeini-Isfahani A., Habibi M.H. Molecular exciton theory calculation based on experimental results for Solophenyl red 3BL azo dye–surfactants interactions. Spectrochimica Acta A. 2006. 64: 464–76. http://doi.org/10.1016/j.saa.2005.07.077

Tatikolov A.S. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. Photobiol. C. 2012. 13(1): 55–90. http://doi.org/10.1016/j.jphotochemrev.2011.11.001

Guralchuk G.Ya., Sorokin A.V., Katrunov I.K., Yefimova S.L., Lebedenko A.N., Malyukin Y.V., Yarmoluk S.M. Specificity of cyanine dye L-21 aggregation in solutions with nucleic acids. J. Fluorescence. 2007. 17(4): 370–76. http://doi.org/10.1007/s10895-007-0201-5

Sorokin A.V. Control of optical properties of polymethine dye J-aggregates using different additives. J. Appl. Spectr. 2009. 76(2): 234–39. http://doi.org/10.1007/s10812-009-9158-2

Published

2015-06-21