Nanocomposites of conjugated polymers for sensor applications
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, September 20, 2023
DOI:
https://doi.org/10.15407/visn2023.11.093Abstract
The report reveals the results of fundamental and applied research carried out at the V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine and aimed at the development and study of new multifunctional hybrid nanocomposites of conjugated polymers with reversible sensitivity to various physical and chemical impacts and the ability to register or sense changes in the atmosphere or breath of the sick, carry diagnostic substances or drugs in the human body, absorb ions of heavy metals and toxic organic compounds from various natural waters and other media, shield/absorb electromagnetic radiation, etc. Particular attention is paid to the application of developed materials for the sorption of hazardous compounds from water media and to the study of latex nanocomposites of electrically conductive polymers with thermal and light sensitivity.
References
Yoshida M., Lahann J. Smart Nanomaterials. ACS Nano. 2008. 2(6): 1101—1107. https://doi.org/10.1021/nn800332g
Su M., Song Y. Printable Smart Materials and Devices: Strategies and Applications. Chem. Rev. 2022. 122(5): 5144—5164. https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.1c00303
Kausar A. Conducting Polymer-Based Nanocomposites: Fundamentals and Applications. Elsevier, 2021. https://doi.org/10.1016/C2019-0-04495-0
Heeger A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. J. Phys. Chem. B. 2001. 105(36): 8475—8491. https://doi.org/10.1021/jp011611w
Ogurtsov N.A., Noskov Y.V., Kruglyak O.S., Bohvan S.I., Klepko V.V., Petrichuk M.V., Pud A.A. Effect of the Dopant Anion and Oxidant on the Structure and Properties of Nanocomposites of Polypyrrole and Carbon Nanotubes. Theor. Exp. Chem. 2018. 54(2): 114—121. https://doi.org/10.1007/s11237-018-9554-x
Li G., Josowicz M., Janata J., Semancik S. Effect of thermal excitation on intermolecular charge transfer efficiency in conducting polyaniline. Appl. Phys. Lett. 2004. 85: 1187—1189. https://doi.org/10.1063/1.1779948
Pud A.A., Ogurtsov N.A., Noskov Yu.V., Mikhaylov S.D., Piryatinski Yu.P., Bliznyuk V.N. On the importance of interface interactions in core-shell nanocomposites of intrinsically conducting polymers. SPQEO. 2019. 22(4): 470—478. https://doi.org/10.15407/spqeo22.04.470
Ogurtsov N.A., Noskov Y.V., Fatyeyeva K.Yu., Ilyin V.G., Dudarenko G.V., Pud A.A. The deep impact of the template on molecular weight, structure and oxidation state of the formed polyaniline. J. Phys. Chem. B. 2013. 117(17): 5306—5314. https://doi.org/10.1021/jp311898v
Mikhaylov S., Ogurtsov N., Noskov Y., Redon N., Coddeville P., Wojkiewicz J.-L., Pud A.A. Ammonia/amines electronic gas sensors based on hybrid polyaniline-TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Adv. 2015. 5(26): 20218—20226. https://doi.org/10.1039/C4RA16121A
Noskov Yu., Ogurtsov N., Bliznyuk V., Lvov Yu., Pud A. Synthesis and properties of core–shell halloysite–polyaniline nanocomposites. Appl. Nanosci. 2022. 12: 1285—1294. https://doi.org/10.1007/s13204-021-01812-9
Wojkiewicz J.-L., Bliznyuk V. N., Carquigny S., Elkamchi N., Redon N., Lasri T., Pud A.A., Reynaud S. Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B. Chem. 2011. 160(1): 1394—1403. https://doi.org/10.1016/j.snb.2011.09.084
Le Maout P., Wojkiewicz J.-L., Redon N., Lahuec C., Seguin F., Dupont L., Mikhaylov S., Noskov Yu., Ogurtsov N., Pud A. Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. Sens. Actuators B. Chem. 2018. 274: 616—626. https://doi.org/10.1016/j.snb.2018.07.178
Ogurtsov N.A., Mamykin A.V., Kukla O.L., Pavluchenko A.S., Borysenko M.V., Piryatinski Yu.P., Wojkiewicz J.-L., Pud A.A. The Impact of Interfacial Interactions on Structural, Electronic, and Sensing Properties of Poly(3-methylthiophene) in Core-Shell Nanocomposites. Application for Chemical Warfare Agent Simulants Detection. Macromol. Mat. Eng. 2022. 307(4): 2100762. https://doi.org/10.1002/mame.202100762
Vretik L.O., Noskov Yu.V., Ogurtsov N.A., Nikolaeva O.A., Shevchenko A.V., Marynin A.I., Kharchuk M.S., Chepurna O.M., Ohulchanskyy T.Y., Pud A.A. Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Appl. Nanosci. 2020. 10: 4951—4964. https://doi.org/10.1007/s13204-020-01424-9
Vretik L.O., Noskov Yu.V., Chepurna O.M., Ogurtsov N.A., Nikolaeva O.A., Marynin A.I., Ohulchanskyy T.Y., Pud A.A. Dual Stimuli-Responsive Ternary Core-Shell Polystyrene@Pnipam-Pedot Latexes. Part. Part. Syst. Charact. 2023. 2300096. https://doi.org/10.1002/ppsc.202300096
Sun Y., Shao D., Chen C., Yang S., Wang X. Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline. Environ. Sci. Technol. 2013. 47: 9904—9910. https://doi.org/10.1021/es401174n
Bliznyuk V.N., Kołacińska K., Pud A.A., Ogurtsov N.A., Noskov Yu.V., Powell B.A., DeVol T.A. High effectiveness of pure polydopamine in extraction of uranium and plutonium from groundwater and seawater. RSC Adv. 2019. 9(52): 30052—30063. https://doi.org/10.1039/C9RA06392G
