Quantum dots are the basis of present and future materials science

Nobel Prize in Chemistry 2023

Authors

DOI:

https://doi.org/10.15407/visn2023.12.033

Keywords:

Nobel Prize in Chemistry 2023, quantum dots, Moungi Bawendi, Louis Brus, Aleksey Yekimov, nanocrystalline semiconductor, size effect, activated glass, inverse micelle solutions

Abstract

This year the Nobel Prize in Chemistry was awarded to American researchers Moungi G. Bawendi from Massachusetts Institute of Technology, Louis E. Brus from Columbia University, and Aleksey I. Yekimov from Nanocrystals Technology Inc. "for the discovery and synthesis of quantum dots”. As stated in the press release of the Nobel Committee, quantum dots are nanoparticles so small that their physical properties are determined to a much greater extent by their size and shape than by their chemical composition. “These smallest components of nanotechnology now spread their light from televisions and LED lamps, and can also guide surgeons when they remove tumour tissue, among many other things”.

References

Brus L.E. A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites. J. Chem. Phys. 1983. 79(11): 5566—5571. https://doi.org/10.1063/1.445676

Fröhlich H. Die spezifische Wärme der Elektronen kleiner Metallteilchen bei tiefen Temperaturen. Physica. 1937. 4(5): 406—412. https://doi.org/10.1016/S0031-8914(37)80143-3

Lifshitz I., Kosevich A. On the oscillations of the thermodynamic parameters of a degenerate Fermi gas at low temperatures. Bulletin of the Academy of Sciences of the USSR. Physics. 1955. (19): 353—357.

Stasenko A.G. Dependence of Forbidden Energy Gap in Cadmium Sulfide Films on Film Thickness. Fizika Tverdogo Tela. 1968. 10(1): 186—190.

Ekimov A.I., Onushchenko A.A., Tsekhomskii V. Exciton light absorption by CuCl microcrystals in glass matrix. Fizika i Khimiya Stekla. 1980. 6(4): 511—512.

Lifshitz, I.M., Slezov V.V. Kinetics of Diffusive Decomposition of Supersaturated Solid Solutions. Sov. Phys. JETP. 1959. 8(2): 331—339.

Ekimov A.I., Hache F., Schanne-Klein M.C., Ricard D., Flytzanis C., Kudryavtsev I.A., Yazeva T.V., Rodina A.V., Efros Al.L. Absorption and Intensity-Dependent Photoluminescence Measurements on CdSe Quantum Dots: Assignment of the First Electronic Transitions. J. Opt. Soc. Am. B. 1993. 10(1): 100—107. https://doi.org/10.1364/JOSAB.10.000100

Rossetti R., Nakahara S., Brus L.E. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution. J. Chem. Phys. 1983. 79(2): 1086—1088. https://doi.org/10.1063/1.445834

Chestnoy N., Hull R., Brus L.E. Higher Excited Electronic States in Clusters of ZnSe, CdSe, and ZnS: Spin-Orbit, Vibronic, and Relaxation Phenomena. J. Chem. Phys. 1986. 85(4): 2237—2242. https://doi.org/10.1063/1.451119

Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerwald M.L., Carroll P.J., Brus L.E. Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc. 1990. 112(4): 1327—1332. https://doi.org/10.1063/1.445834

Murray C.B., Norris D.J., Bawendi M.G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993. 115(19): 8706—8715. https://doi.org/10.1021/ja00072a025

Ekimov A.I., Onushchenko A.A., Plukhin A.G., Efros Al.L. Size Quantization of Excitons and Determination of the Parameters of Their Energy Spectrum in CuCl. Sov. Phys. JETP. 1985. 61(4): 891—897.

Dadykin A.A., Naumovets A.G., Kozyrev Yu.N., Rubezhanska M.Yu., Lytvyn P.M., Litvin Yu.M. Field and photo-field electron emission from self-assembled Ge–Si nanoclusters with quantum dots. Prog. Surf. Sci. 2003. 74(1): 305—318. https://doi.org/10.1016/j.progsurf.2003.08.024

Lysenko V., Gomeniuk Y.V., Kudina V., Garbar N., Kondratenko S., Melnichuk Y.Y., Kozyrev Y. Hopping conduction and LF noise in structures with Ge nanoclusters grown on oxidized Si(001). Journal of Materials Science. 2016. 51(19): 8799—8811. https://doi.org/10.1007/s10853-016-0071-9

Kondratenko S.V., Lysenko V.S., Kozyrev Y.N., Kratzer M., Storozhuk D.P., Iliash S.A., Czibula C., Teichert C. Local charge trapping in Ge nanoclusters detected by Kelvin probe force microscopy. Applied Surface Science. 2016. 389: 783—789. https://doi.org/10.1016/j.apsusc.2016.07.148

Published

2023-12-27