Brain neural circuits involved in mammalian navigation

Authors

  • M.S. Shypshyna Bogomoletz Institute of Physiology of NAS of Ukraine, Kyiv
  • N.S. Veselovsky Bogomoletz Institute of Physiology of NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2015.01.033

Keywords:

place cells, grid cells, Nobel Prize, J. O’Keefe, M.-B. Moser, E. Moser

Abstract

The 2014 Nobel Prize in Physiology or Medicine was awarded to Dr. John M. O’Keefe, Dr. May-Britt Moser and Dr. Edvard I. Moser for their discoveries of the brain nerve cells responsible for navigation. The results of innovative researches of the 2014 laureates expanded our understanding of the implementation of mental functions in the brain, as well as provided insight into the mechanisms of processing complex cognitive functions and behavior in the brain.

References

Press Release of the Nobel Assembly at Karolinska Institutet http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014/press.html.

Tolman E.C. Cognitive maps in rats and men. Psychol. Rev. 1948. 55: 189. http://doi.org/10.1037/h0061626

Strumwasser F. Long-term recording from single neurons in brain of unrestrained mammals. Science. 1958. 127: 469. http://doi.org/10.1126/science.127.3296.469

O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971. 34: 171. http://doi.org/10.1016/0006-8993(71)90358-1

O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp. Neurology. 1976. 51: 78. http://doi.org/10.1016/0014-4886(76)90055-8

O’Keefe J., Conway D.H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 1978. 31: 573. http://doi.org/10.1007/BF00239813

O’Keefe J., Speakman A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 1987. 68: 1. http://doi.org/10.1007/BF00255230

Lever C., Wills T., Cacucci F. et al. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002. 416: 90. http://doi.org/10.1038/416090a

Hafting T., Fyhn M., Molden S. et al. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005. 436: 801. http://doi.org/10.1038/nature03721

Solstad T., Boccara C.N., Kropff E., Moser M.B., Moser E.I.. Representation of geometric borders in the entorhinal cortex. Science. 2008. 322: 1865. http://doi.org/10.1126/science.1166466

Solstad T., Moser E.I., Einevoll G.T. From grid cells to place cells: a mathematical model. Hippocampus. 2006. 16: 1026. http://doi.org/10.1002/hipo.20244

Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y., Moser E.I., Moser M.B. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 2013. 16: 309. http://doi.org/10.1038/nn.3311

Hafting T., Fyhn M., Bonnevie T., Moser M.B., Moser E.I. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 2008. 453: 1248. http://doi.org/10.1038/nature06957

Fyhn M., Hafting T., Treves A., Moser M.B., Moser E.I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007. 446: 190. http://doi.org/10.1038/nature05601

Brandon M.P., Bogaard A.R., Libby C.P., Connerney M.A., Gupta K., Hasselmo M.E. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science. 2011. 332: 595. http://doi.org/10.1126/science.1201652

Bush D., Barry C., Burgess N. What do grid cells contribute to place cell firing? Trends in Neuroscience. 2014. 37(3): 136. http://doi.org/10.1016/j.tins.2013.12.003

Bjerknes T.L., Moser E.I., Moser M.B. Representation of geometric borders in the developing rat. Neuron. 2014. 82(1): 71. http://doi.org/10.1016/j.neuron.2014.02.014

Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal cortex. Nature. 2012. 491: 761. http://doi.org/10.1038/nature11587

Ulanovsky N., Moss C.F. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 2007. 10: 224. http://doi.org/10.1038/nn1829

Yartsev M.M., Witter M.P., Ulanovsky N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011. 479: 103. http://doi.org/10.1038/nature10583

Yartsev M.M., Ulanovsky N. Representation of three-dimensional space in the hippocampus of flying bats. Science. 2013. 340: 367. http://doi.org/10.1126/science.1235338

Ekstrom A.D., Kahana M.J., Caplan J.B., Fields T.A., Isham E.A., Newman E.L., Fried I. Cellular networks underlying human spatial navigation. Nature. 2003. 425: 184. http://doi.org/10.1038/nature01964

Jacobs J., Kahana M.J., Ekstrom A.D. A sense of direction in human entorhinal cortex. PNAS. 2010. 107: 6487. http://doi.org/10.1073/pnas.0911213107

Jacobs J., Weidemann C.T., Miller J.F., Solway A., Burke J.F., Wei X.X., Suthana N., Sperling M.R., Sharan A.D., Fried I., Kahana M.J. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013. 6: 1188. http://doi.org/10.1038/nn.3466

Published

2015-01-26

How to Cite

Shypshyna, M., & Veselovsky, N. (2015). Brain neural circuits involved in mammalian navigation. Visnyk of the National Academy of Sciences of Ukraine, (1), 33–38. https://doi.org/10.15407/visn2015.01.033