Brain neural circuits involved in mammalian navigation
DOI:
https://doi.org/10.15407/visn2015.01.033Keywords:
place cells, grid cells, Nobel Prize, J. O’Keefe, M.-B. Moser, E. MoserAbstract
The 2014 Nobel Prize in Physiology or Medicine was awarded to Dr. John M. O’Keefe, Dr. May-Britt Moser and Dr. Edvard I. Moser for their discoveries of the brain nerve cells responsible for navigation. The results of innovative researches of the 2014 laureates expanded our understanding of the implementation of mental functions in the brain, as well as provided insight into the mechanisms of processing complex cognitive functions and behavior in the brain.
References
Press Release of the Nobel Assembly at Karolinska Institutet http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014/press.html.
Tolman E.C. Cognitive maps in rats and men. Psychol. Rev. 1948. 55: 189. http://doi.org/10.1037/h0061626
Strumwasser F. Long-term recording from single neurons in brain of unrestrained mammals. Science. 1958. 127: 469. http://doi.org/10.1126/science.127.3296.469
O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971. 34: 171. http://doi.org/10.1016/0006-8993(71)90358-1
O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp. Neurology. 1976. 51: 78. http://doi.org/10.1016/0014-4886(76)90055-8
O’Keefe J., Conway D.H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 1978. 31: 573. http://doi.org/10.1007/BF00239813
O’Keefe J., Speakman A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 1987. 68: 1. http://doi.org/10.1007/BF00255230
Lever C., Wills T., Cacucci F. et al. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002. 416: 90. http://doi.org/10.1038/416090a
Hafting T., Fyhn M., Molden S. et al. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005. 436: 801. http://doi.org/10.1038/nature03721
Solstad T., Boccara C.N., Kropff E., Moser M.B., Moser E.I.. Representation of geometric borders in the entorhinal cortex. Science. 2008. 322: 1865. http://doi.org/10.1126/science.1166466
Solstad T., Moser E.I., Einevoll G.T. From grid cells to place cells: a mathematical model. Hippocampus. 2006. 16: 1026. http://doi.org/10.1002/hipo.20244
Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y., Moser E.I., Moser M.B. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 2013. 16: 309. http://doi.org/10.1038/nn.3311
Hafting T., Fyhn M., Bonnevie T., Moser M.B., Moser E.I. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 2008. 453: 1248. http://doi.org/10.1038/nature06957
Fyhn M., Hafting T., Treves A., Moser M.B., Moser E.I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007. 446: 190. http://doi.org/10.1038/nature05601
Brandon M.P., Bogaard A.R., Libby C.P., Connerney M.A., Gupta K., Hasselmo M.E. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science. 2011. 332: 595. http://doi.org/10.1126/science.1201652
Bush D., Barry C., Burgess N. What do grid cells contribute to place cell firing? Trends in Neuroscience. 2014. 37(3): 136. http://doi.org/10.1016/j.tins.2013.12.003
Bjerknes T.L., Moser E.I., Moser M.B. Representation of geometric borders in the developing rat. Neuron. 2014. 82(1): 71. http://doi.org/10.1016/j.neuron.2014.02.014
Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal cortex. Nature. 2012. 491: 761. http://doi.org/10.1038/nature11587
Ulanovsky N., Moss C.F. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 2007. 10: 224. http://doi.org/10.1038/nn1829
Yartsev M.M., Witter M.P., Ulanovsky N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011. 479: 103. http://doi.org/10.1038/nature10583
Yartsev M.M., Ulanovsky N. Representation of three-dimensional space in the hippocampus of flying bats. Science. 2013. 340: 367. http://doi.org/10.1126/science.1235338
Ekstrom A.D., Kahana M.J., Caplan J.B., Fields T.A., Isham E.A., Newman E.L., Fried I. Cellular networks underlying human spatial navigation. Nature. 2003. 425: 184. http://doi.org/10.1038/nature01964
Jacobs J., Kahana M.J., Ekstrom A.D. A sense of direction in human entorhinal cortex. PNAS. 2010. 107: 6487. http://doi.org/10.1073/pnas.0911213107
Jacobs J., Weidemann C.T., Miller J.F., Solway A., Burke J.F., Wei X.X., Suthana N., Sperling M.R., Sharan A.D., Fried I., Kahana M.J. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013. 6: 1188. http://doi.org/10.1038/nn.3466