What’s New in Stem Cell Research or is it Possible to Get a New Organism from Skin Cells?
DOI:
https://doi.org/10.15407/visn2013.01.052Keywords:
stem cells, pluripotency, iPS-cells, Nobel PrizeAbstract
The annual ceremony of the Nobel Prizes awarding, which traditionally takes place on December 10 — the day when Swedish entrepreneur, inventor and philanthropist, the founder of Nobel Foundation Alfred Bernhard Nobel (1833–1896) passed away, usually attracts a lot of attention — of scientific community but also of general publics. This happens because the Nobel Prize is by all means the doubtless recognition of the Prize winner’s contribution into the world science. The Nobel Prize in Physiology or Medicine 2012 was awarded «for the discovery that mature cells can be reprogrammed to become pluripotetnt».
References
Butenko Z.A., Komissarenko S.V., Gruzov M.A., Khomenko B.M. Immunoelectronmicroscopy of the bone marrow mononuclears labeling with rabbit anti-mouse brain serum using peroxidase-anti-peroxidase method. Blut. 1983. 47(6): 343–49. http://doi.org/10.1007/BF00320348
Zak K.P., Butenko Z.A., Komissarenko S.V. Gematologiya i transfuziologiya (Hematology and Transfusiology). 1983. 28(2): 38–42.
Gurdon J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962. (10): 622–40.
Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997. 385: 810–13. http://doi.org/10.1038/385810a0
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006. 126: 663–76. http://doi.org/10.1016/j.cell.2006.07.024
Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007. 448: 313–17. http://doi.org/10.1038/nature05934
Zhao X.Y., Li W., Lv Z., Tong M., Hai T., Hao J., Guo C.L., Ma Q.W., Wang L., Zeng F., Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature. 2009. 461: 86–90. http://doi.org/10.1038/nature08267
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007. 131(5): 861–72. http://doi.org/10.1016/j.cell.2007.11.019
Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007. 318: 1917–20. http://doi.org/10.1126/science.1151526
Okita K., Nakagawa M., Hyenjong H., Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008. 322: 949–53. http://doi.org/10.1126/science.1164270
Onder T.T., Daley G.Q. New lessons learned from disease modeling with induced pluripotent stem cells. Curr. Opin. Genet. Dev. 2012. 22(5): 500–08. http://doi.org/10.1016/j.gde.2012.05.005
Lee G., Papapetrou E.P., Kim H., Chambers S.M., Tomishima M.J., Fasano C.A., Ganat Y.M., Menon J., Shimizu F., Viale A., Tabar V., Sadelain M., Studer L. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009. 461: 402–06. http://doi.org/10.1038/nature08320
Doege C.A., Inoue K., Yamashita T., Rhee D.B., Travis S., Fujita R., Guarnieri P., Bhagat G., Vanti W.B., Shih A., Levine R.L., Nik S., Chen E.I., Abeliovich A. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature. 2012. 488: 652–55. http://doi.org/10.1038/nature11333