Modern Understanding of the Frictional Mechanisms
Scientific Report at NAS Presidium Meeting 24 October 2012
DOI:
https://doi.org/10.15407/visn2012.12.012Keywords:
friction mechanism, molecular dynamics simulation, self-healing cracks, frictional interfaceAbstract
Friction is one of the oldest physical problems of great practical importance; despite of this, a full understanding of the problem is still lacking. The talk is devoted to recent theoretical studies of the physics of friction. First, the results of molecular dynamics simulations are considered, which clarify microscopic mechanisms of motion of a thin lubricant film. Then, the master equation approach to friction on the mesoscopic scale is discussed. Generalizations of this approach in order to incorporate the interaction between the contacts (asperities), the soliton-like propagation of self-healing cracks in the frictional interface, and the role of substrate deformations at the onset of sliding which leads to appearance of precursors, are considered.
References
Rubinstein S.M., Cohen G., Fineberg J. Detachment fronts and the onset of dynamic friction. Nature. 2004. 430: 1005. http://doi.org/10.1038/nature02830
Braun O.M., Volokitin A.I., Zhdanov V.P. Vibrational spectroscopy of adsorbates. Physics-Uspekhi (Advances in Physical Sciences). 1989. 32(7): 605. http://doi.org/10.1070/PU1989v032n07ABEH002738
Braun O.M., Peyrard M. Friction in a solid lubri-cant film. Phys. Rev. E. 2001. 63: 046110. http://doi.org/10.1103/PhysRevE.63.046110
Braun O.M. Kivshar Yu.S. The Frenkel-Kontorova Model: Concepts, Methods, and Applications. (Berlin: Springer-Verlag, 2004). http://doi.org/10.1007/978-3-662-10331-9
Braun O.M., Paliy M., Consta S. Ordering of a thin lubricant film due to sliding. Phys. Rev. Lett. 2004. 92: 256103. http://doi.org/10.1103/PhysRevLett.92.256103
Paliy M., Braun O.M., Consta S. The friction properties of an ultrathin confined water film. Tribol. Lett. 2006. 23: 7. http://doi.org/10.1007/s11249-006-9104-x
Paliy M., Braun O.M., Consta S. Friction in a thin water layer: Dissociative versus non-dissociative friction. J. Phys. Chem. C. 2012. 116: 8932. http://doi.org/10.1021/jp210761f
Braun O.M., Manini N., Tosatti E. Role of lubricant molecular shape in microscopic friction. Phys. Rev. B. 2008. 78: 195402. http://doi.org/10.1103/PhysRevB.78.195402
Braun O.M. Simple model of microscopic rolling friction. Phys. Rev. Lett. 2005. 95: 126104. http://doi.org/10.1103/PhysRevLett.95.126104
Braun O.M., Tosatti E. Molecular rolling friction: the cogwheel model. J. Phys. Condens. Matter. 2008. 20: 354007. http://doi.org/10.1088/0953-8984/20/35/354007
Braun O.M., Manini N. Dependence of boundary lubrication on the misfit angle between the sliding surfaces. Phys. Rev. E. 2011. 83: 021601. http://doi.org/10.1103/PhysRevE.83.021601
Braun O.M., Peyrard M. Master equation approach to friction at the mesoscale. Phys. Rev. E. 2010. 82: 036117. http://doi.org/10.1103/PhysRevE.82.036117
Braun O.M. Peyrard M. Modeling friction on a mesoscale: Master equation for the earthquakelike model. Phys. Rev. Lett. 2008. 100: 125501. http://doi.org/10.1103/PhysRevLett.100.125501
Braun O.M., Peyrard M. Dependence of kinetic friction on velocity: Master equation approach. Phys. Rev. E. 2011. 83: 046129. http://doi.org/10.1103/PhysRevE.83.046129
Braun O.M., Peyrard M., Stryzheus D.V., Tosatti E. Collective effects at frictional interfaces. Tribol. Lett. 2012. 48: http://doi.org/10.1007/s11249-012-9913-z
Braun O.M., Peyrard M. Crack in the frictional interface as a solitary wave. Phys. Rev. E. 2012. 85: 026111. http://doi.org/10.1103/PhysRevE.85.026111
Rubinstein S.M., Barel I., Reches Z. et al. Slip sequences in laboratory experiments resulting from inhomogeneous shear as analogs of earthquakes associated with a fault edge. Pure Appl. Geophys. 2011. 168: 2151. http://doi.org/10.1007/s00024-010-0239-1
Braun O.M., Barel I., Urbakh M. Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 2009. 103: 194301. http://doi.org/10.1103/PhysRevLett.103.194301
Braun O.M. Bridging the gap between the atomic-scale and macroscopic modeling of friction. Tribol. Lett. 2010. 39: 283. http://doi.org/10.1007/s11249-010-9648-7
Braun O.M., Naumovets A.G. Nanotribology: Microscopic mechanisms of friction. Surf. Sci. Rep. 2006. 60: 79. http://doi.org/10.1016/j.surfrep.2005.10.004