Artificial molecular machines

Nobel Prize in Chemistry for 2016

Authors

  • V.O. Kovtunenko Taras Shevchenko National University of Kyiv
  • M.S. Miroshnychenko Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/visn2016.12.074

Keywords:

molecular machines, mechanical connection, catenanes, rotaxanes, molecular Borromean rings

Abstract

The Nobel Prize in Chemistry in 2016 for "design and synthesis of molecular machines" was awarded to Jean-Pierre Sauvage (University of Strasbourg, France), Sir J. Fraser Stoddart (Northwestern University, USA) and Bernard Lucas Feringa (University of Groningen, Netherlands). Awarding the Nobel Prize is based on synthesis of catenanes, rotaxanes, Borromean rings, the characteristic feature of which is the combination of several individual organic molecules in a supramolecular entity that is held by mechanical coupling. Representatives of the Royal Swedish Academy of Sciences said that the three scientists have "revived" the topological field research in chemistry, and "the smallest machines in the world" can be used to develop new materials, sensors and energy storage systems.

References

Kostyuk P.G., Zyma V.L., Magura I.S., Miroshnychenko M.S., Shuba M.F. Biophysics. (Kyiv, Taras Shevchenko National University of Kyiv, 2008).

Shiroguchi K., Kinosita K. Jr. Myosin V walks by lever action and brownian motion. Science. 2007. 316(5828): 1208. https://doi.org/10.1126/science.1140468

Karp G. Cell and Molecular Biology: Concepts and Experiments. (Hoboken, NJ: Wiley, 2005). Р. 346–358.

Schroer T.A. Dynactin. Annual Review of Cell and Developmental Biology. 2004. 20:759. https://doi.org/10.1146/annurev.cellbio.20.012103.094623

Stoddart J.F. The chemistry of the mechanical bond. Chem. Soc. Rev. 2009. 38: 1802.https://doi.org/10.1039/b819333a

Browne W.R., Feringa B.L. Making molecular machines work. Nat. Nanotechnol. 2006. 1(1): 25.https://doi.org/10.1038/nnano.2006.45

Cesario M., Dietrich-Buchecker C., Guilhem J., Pascard C., Sauvage J.-P. Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation. J. Chem. Soc. Chem. Commun. 1985. (5): 244.https://doi.org/10.1039/c39850000244

Frey J., Kraus T., Heitz V., Sauvage J.-P. A catenane consisting of a large ring threaded through both cyclic units of a handcuff-like compound. Chem. Commun.(Camb.). 2005. (42): 5310.https://doi.org/10.1039/b509745b

Coskun A., Banaszak M., Astumian R.D., Stoddart J.F., Grzybowski B.A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012. 41(1): 19.https://doi.org/10.1039/C1CS15262A

Ashton P.R., Brown C.L., Chrystal E.J.T., Goodnow T.T., Kaifer A.E., Parry K.P., Philp D., Slawin A.M.Z., Spencer N., Stoddart J.F., Williams D.J. The self-assembly of a highly ordered [2]catenane. J. Chem. Soc. Chem. Commun. 1991. (9): 634.https://doi.org/10.1039/c39910000634

Fletcher S.P., Dumur F., Pollard M.M., Feringa B.L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science. 2005. 310(5745): 80.https://doi.org/10.1126/science.1117090

Schill G., Lüttringhaus A. Preparation of Catena Compounds by Directed Synthesis. Angew. Chem. 1964. 3: 546.https://doi.org/10.1002/anie.196405461

Sauvage J.P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. ChemInform. 1999. 30(4).https://doi.org/10.1002/chin.199904221

Dietrich-Buchecker C.O., Sauvage J.-P. A synthetic molecular trefoil knot. Angew. Chem. 1989. 28(2): 189.https://doi.org/10.1002/anie.198901891

Stoddart J.F., Bruns C.J. The Nature of the Mechanical Bond: From Molecules to Machines. (Wiley, 2016).

Richards V. Molecular Machines. Chemistry World. 16 February 2016. https://www.chemistryworld.com/feature/molecular-machines/9457.article.

Fletcher S.P., Dumur F., Pollard M.M., Feringa B.L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science. 2005. 310(5745): 80.https://doi.org/10.1126/science.1117090

Feringa B.L., Koumura N., Zijlstra R.W.J., Van Delden R.A., Harada N. Light-driven monodirectional molecular rotor. Nature. 1999. 401(6749): 152.https://doi.org/10.1038/43646

Vicario J., Walko M., Meetsma A., Feringa B.L. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 2006. 128(15): 5127.https://doi.org/10.1021/ja058303m

Mao C., Sun W., Seeman N.C. Assembly of Borromean rings from DNA. Nature. 1997. 386: 137.https://doi.org/10.1038/386137b0

Chichak K.S., Cantrill S.J., Pease A.R., Chiu Sh.-H., Cave G.W.V., Atwood J.L., Stoddart J.F. Molecular Borromean Rings. Science. 2004. 304(5675): 1308.https://doi.org/10.1126/science.1096914

Carroll G.T., Pollard M.M., Van Delden R., Feringa B.L. Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 2010. (1): 97.https://doi.org/10.1039/c0sc00162g

Wang J., Feringa B.L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor science. Science. 2011. 331(6023): 1429.https://doi.org/10.1126/science.1199844

Published

2025-05-11