Promising nanoscale ferroelectrics compatible with semiconductor technologies
Transcript of scientific report at the meeting of the Presidium of NAS of Ukraine, January 22, 2025
DOI:
https://doi.org/10.15407/visn2025.03.080Abstract
The report discusses the results of fundamental and applied research conducted at the I.M. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine on the creation and technological development of ferroelectric nanomaterials based on simple oxides and nitrides, including films, particles, and their composites with polymeric materials. Thanks to these works, a new area of scientific research “silicon-compatible nanoferroelectrics” was initiated and a new group of ferroelectric nanomaterials was proposed, which are able to meet the needs of the modern semiconductor device manufacturing industry.
Cite this article:
Eliseev E.A. Promising nanoscale ferroelectrics compatible with semiconductor technologies. Visn. Nac. Akad. Nauk Ukr. 2025. (3): 80—89. https://doi.org/10.15407/visn2025.03.080
References
Kim K.-H., Karpov I., Olsson III R.H., Jariwala D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nature Nanotechnology. 2023. 18: 422—441. https://doi.org/10.1038/s41565-023-01361-y
Mikolajick T., Slesazeck S., Mulaosmanovic H., Park M.H., Fichtner S., Lomenzo P.D., Hoffmann M., Schroeder U. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 2021. 129: 100901. https://doi.org/10.1063/5.0037617
Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011. 99: 102903. https://doi.org/10.1063/1.3634052
Fichtner S., Wolff N., Lofink F., Kienle L., Wagner B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019. 125: 114103. https://doi.org/10.1063/1.5084945
Landau L.D. On the theory of phase transitions. I. Phys. Z. Sowjetunion. 1937. 11(26): 63—64 [in Russian]. English translation in: Collected Papers of L.D. Landau. Pergamon, 1965. P. 193—216. https://doi.org/10.1016/B978-0-08-010586-4.50034-1
Landau L.D., Lifshitz E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion. 1935. 8: 153 [in Russian]. English translation in: Collected Papers of L.D. Landau. Pergamon, 1965. P. 101—114. https://doi.org/10.1016/B978-0-08-010586-4.50023-7
Ginzburg V.L. On the dielectric properties of ferroelectric (Seignette-electric) crystals and barium titanate. Zh. Eksp. Teor. Fiz. 1945. 15: 739—749 [in Russian].
Ginzburg V.L., Landau L.D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 1950. 20(12): 1064—1082 [in Russian]. English translation: Ginzburg V.L., Landau L.D. On the Theory of Superconductivity. In: On Superconductivity and Superfluidity. Springer, 2009. https://doi.org/10.1007/978-3-540-68008-6_4
Devonshire A.F. XCVI. Theory of barium titanate. Part I. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1949. 40(309): 1040—1063. https://doi.org/10.1080/14786444908561372
Ginzburg V.L., Levanyuk A.P. Light scattering near second-order phase-transition and Curie points. Journal of Physics and Chemistry of Solids. 1958. 6(1): 51—58. https://doi.org/10.1016/0022-3697(58)90217-8
Levanyuk A.P. Contribution to the theory of light scattering near the second-order phase-transition points. Sov. Phys. — JETP. 1959. 9(3): 571—576.
Falk F. Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metallurgica. 1980. 28(12): 1773—1780. https://doi.org/10.1016/0001-6160(80)90030-9
Tilley D.R., Žekš B. Landau theory of phase transitions in thick films. Solid State Communications. 1984. 49(8): 823—828. https://doi.org/10.1016/0038-1098(84)90089-9
Cao W., Cross L.E. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B. 1991. 44: 5. https://doi.org/10.1103/PhysRevB.44.5
Pertsev N.A., Zembilgotov A.G., Tagantsev A.K. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 1998. 80: 1988. https://doi.org/10.1103/PhysRevLett.80.1988
Glinchuk M.D., Eliseev E.A., Stephanovich V.A., Fahri R. Ferroelectric thin films properties — Depolarization field and renormalization of a "bulk" free energy coefficients. J. Appl. Phys. 2003. 93: 1150—1159. https://doi.org/10.1063/1.1529091
Morozovska A.N., Eliseev E.A., Glinchuk M.D. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B. 2006. 73: 214106. https://doi.org/10.1103/PhysRevB.73.214106
Eliseev E.A., Morozovska A.N., Kalinin S.V., Li Y., Shen J., Glinchuk M.D., Chen L.-Q., Gopalan V. Surface Effect on Domain Wall Width in Ferroelectrics. J. Appl. Phys. 2009. 106: 084102. https://doi.org/10.1063/1.3236644
Eliseev E.A., Morozovska A.N., Glinchuk M.D., Blinc R. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009. 79: 165433. https://doi.org/10.1103/PhysRevB.79.165433
Morozovska A.N., Eliseev E.A., Glinchuk M.D., Chen L.-Q., Gopalan V. Interfacial Polarization and Pyroelectricity in Antiferrodistortive Structures Induced by a Flexoelectric Effect and Rotostriction. Phys. Rev. B. 2012. 85: 094107. https://doi.org/10.1103/PhysRevB.85.094107
Eliseev E.A., Morozovska A.N., Glinchuk M.D., Kalinin S.V. Missed surface waves in non-piezoelectric solids. Phys. Rev. B. 2017. 96(4): 045411. https://link.aps.org/doi/10.1103/PhysRevB.96.045411
Eliseev E.A., Morozovska A.N., Nelson C.T., Kalinin S.V. Intrinsic structural instabilities of domain walls driven by gradient couplings: meandering antiferrodistortive-ferroelectric domain walls in BiFeO3. Phys. Rev. B. 2019. 99: 014112. https://link.aps.org/doi/10.1103/PhysRevB.99.014112
Eliseev E.A., Fomichov Y.M., Kalinin S.V., Vysochanskii Y.M., Maksymovich P., Morozovska A.N. Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological phase transition. Phys. Rev. B. 2018. 98: 054101. https://doi.org/10.1103/PhysRevB.98.054101
Eliseev E.A., Morozovska A.N., Hertel R., Shevliakova H.V., Fomichov Y.M., Reshetnyak V.Yu., Evans D.R. Flexo-Elastic Control Factors of Domain Morphology in Core-Shell Ferroelectric Nanoparticles: Soft and Rigid Shells. Acta Materialia. 2021. 212: 116889. https://doi.org/10.1016/j.actamat.2021.116889
Eliseev E.A., Kalinin S.V., Morozovska A.N. Ferro-ionic States and Domains Morphology in HfxZr1–xO2 Nanoparticles. Journal of Applied Physics. 2025. 137: 034103. https://doi.org/10.1063/5.0243067
Sze S.M., Kwok K.Ng. Physics of Semiconductor Devices. New York: Wiley, 2007. https://doi.org/10.1002/0470068329
Morozovska A.N., Eliseev E.A., Vysochanskii Yu.M., Kalinin S.V., Strikha M.V. Size Effect of Negative Capacitance State and Subthreshold Swing in Van der Waals Ferrielectric Field-Effect Transistors. Advanced Electronic Materials. 2024. 2400495. https://doi.org/10.1002/aelm.202400495