Promising nanoscale ferroelectrics compatible with semiconductor technologies

Transcript of scientific report at the meeting of the Presidium of NAS of Ukraine, January 22, 2025

Authors

DOI:

https://doi.org/10.15407/visn2025.03.080

Abstract

The report discusses the results of fundamental and applied research conducted at the I.M. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine on the creation and technological development of ferroelectric nanomaterials based on simple oxides and nitrides, including films, particles, and their composites with polymeric materials. Thanks to these works, a new area of scientific research “silicon-compatible nanoferroelectrics” was initiated and a new group of ferroelectric nanomaterials was proposed, which are able to meet the needs of the modern semiconductor device manufacturing industry.

 

Cite this article: 

Eliseev E.A. Promising nanoscale ferroelectrics compatible with semiconductor technologies. Visn. Nac. Akad. Nauk Ukr. 2025. (3): 80—89. https://doi.org/10.15407/visn2025.03.080 

References

Kim K.-H., Karpov I., Olsson III R.H., Jariwala D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nature Nanotechnology. 2023. 18: 422—441. https://doi.org/10.1038/s41565-023-01361-y

Mikolajick T., Slesazeck S., Mulaosmanovic H., Park M.H., Fichtner S., Lomenzo P.D., Hoffmann M., Schroeder U. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 2021. 129: 100901. https://doi.org/10.1063/5.0037617

Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011. 99: 102903. https://doi.org/10.1063/1.3634052

Fichtner S., Wolff N., Lofink F., Kienle L., Wagner B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019. 125: 114103. https://doi.org/10.1063/1.5084945

Landau L.D. On the theory of phase transitions. I. Phys. Z. Sowjetunion. 1937. 11(26): 63—64 [in Russian]. English translation in: Collected Papers of L.D. Landau. Pergamon, 1965. P. 193—216. https://doi.org/10.1016/B978-0-08-010586-4.50034-1

Landau L.D., Lifshitz E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion. 1935. 8: 153 [in Russian]. English translation in: Collected Papers of L.D. Landau. Pergamon, 1965. P. 101—114. https://doi.org/10.1016/B978-0-08-010586-4.50023-7

Ginzburg V.L. On the dielectric properties of ferroelectric (Seignette-electric) crystals and barium titanate. Zh. Eksp. Teor. Fiz. 1945. 15: 739—749 [in Russian].

Ginzburg V.L., Landau L.D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 1950. 20(12): 1064—1082 [in Russian]. English translation: Ginzburg V.L., Landau L.D. On the Theory of Superconductivity. In: On Superconductivity and Superfluidity. Springer, 2009. https://doi.org/10.1007/978-3-540-68008-6_4

Devonshire A.F. XCVI. Theory of barium titanate. Part I. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1949. 40(309): 1040—1063. https://doi.org/10.1080/14786444908561372

Ginzburg V.L., Levanyuk A.P. Light scattering near second-order phase-transition and Curie points. Journal of Physics and Chemistry of Solids. 1958. 6(1): 51—58. https://doi.org/10.1016/0022-3697(58)90217-8

Levanyuk A.P. Contribution to the theory of light scattering near the second-order phase-transition points. Sov. Phys. — JETP. 1959. 9(3): 571—576.

Falk F. Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metallurgica. 1980. 28(12): 1773—1780. https://doi.org/10.1016/0001-6160(80)90030-9

Tilley D.R., Žekš B. Landau theory of phase transitions in thick films. Solid State Communications. 1984. 49(8): 823—828. https://doi.org/10.1016/0038-1098(84)90089-9

Cao W., Cross L.E. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B. 1991. 44: 5. https://doi.org/10.1103/PhysRevB.44.5

Pertsev N.A., Zembilgotov A.G., Tagantsev A.K. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 1998. 80: 1988. https://doi.org/10.1103/PhysRevLett.80.1988

Glinchuk M.D., Eliseev E.A., Stephanovich V.A., Fahri R. Ferroelectric thin films properties — Depolarization field and renormalization of a "bulk" free energy coefficients. J. Appl. Phys. 2003. 93: 1150—1159. https://doi.org/10.1063/1.1529091

Morozovska A.N., Eliseev E.A., Glinchuk M.D. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B. 2006. 73: 214106. https://doi.org/10.1103/PhysRevB.73.214106

Eliseev E.A., Morozovska A.N., Kalinin S.V., Li Y., Shen J., Glinchuk M.D., Chen L.-Q., Gopalan V. Surface Effect on Domain Wall Width in Ferroelectrics. J. Appl. Phys. 2009. 106: 084102. https://doi.org/10.1063/1.3236644

Eliseev E.A., Morozovska A.N., Glinchuk M.D., Blinc R. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B. 2009. 79: 165433. https://doi.org/10.1103/PhysRevB.79.165433

Morozovska A.N., Eliseev E.A., Glinchuk M.D., Chen L.-Q., Gopalan V. Interfacial Polarization and Pyroelectricity in Antiferrodistortive Structures Induced by a Flexoelectric Effect and Rotostriction. Phys. Rev. B. 2012. 85: 094107. https://doi.org/10.1103/PhysRevB.85.094107

Eliseev E.A., Morozovska A.N., Glinchuk M.D., Kalinin S.V. Missed surface waves in non-piezoelectric solids. Phys. Rev. B. 2017. 96(4): 045411. https://link.aps.org/doi/10.1103/PhysRevB.96.045411

Eliseev E.A., Morozovska A.N., Nelson C.T., Kalinin S.V. Intrinsic structural instabilities of domain walls driven by gradient couplings: meandering antiferrodistortive-ferroelectric domain walls in BiFeO3. Phys. Rev. B. 2019. 99: 014112. https://link.aps.org/doi/10.1103/PhysRevB.99.014112

Eliseev E.A., Fomichov Y.M., Kalinin S.V., Vysochanskii Y.M., Maksymovich P., Morozovska A.N. Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological phase transition. Phys. Rev. B. 2018. 98: 054101. https://doi.org/10.1103/PhysRevB.98.054101

Eliseev E.A., Morozovska A.N., Hertel R., Shevliakova H.V., Fomichov Y.M., Reshetnyak V.Yu., Evans D.R. Flexo-Elastic Control Factors of Domain Morphology in Core-Shell Ferroelectric Nanoparticles: Soft and Rigid Shells. Acta Materialia. 2021. 212: 116889. https://doi.org/10.1016/j.actamat.2021.116889

Eliseev E.A., Kalinin S.V., Morozovska A.N. Ferro-ionic States and Domains Morphology in HfxZr1–xO2 Nanoparticles. Journal of Applied Physics. 2025. 137: 034103. https://doi.org/10.1063/5.0243067

Sze S.M., Kwok K.Ng. Physics of Semiconductor Devices. New York: Wiley, 2007. https://doi.org/10.1002/0470068329

Morozovska A.N., Eliseev E.A., Vysochanskii Yu.M., Kalinin S.V., Strikha M.V. Size Effect of Negative Capacitance State and Subthreshold Swing in Van der Waals Ferrielectric Field-Effect Transistors. Advanced Electronic Materials. 2024. 2400495. https://doi.org/10.1002/aelm.202400495

Published

2025-03-18