Ways to increase the effectiveness of drugs
Transcript of scientific report at the meeting of the Presidium of NAS of Ukraine, January 22, 2025
DOI:
https://doi.org/10.15407/visn2025.03.067Abstract
The report presents the results of fundamental and applied research conducted at the Institute of Cell Biology of the National Academy of Sciences of Ukraine to identify ways to eliminate the shortcomings inherent in many drugs, such as the non-targeted effect of injected drugs and, as a result, their hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, genotoxicity, and immunosuppressive effect. Important disadvantages of antitumor and antituberculosis drugs are also their poor solubility in water and the rapid (within 6—12 months) development of multiple drug resistance.
Cite this article:
Stoika R.S. Ways to increase the eff ectiveness of drugs. Visn. Nac. Akad. Nauk Ukr. 2025. (3): 67—79. https://doi.org/10.15407/visn2025.03.067
References
Voitko S., Korolova S. Economic overview of the situation on the world pharmaceutical market under the influence of COVID-19. Efektyvna ekonomika. 2021. (11). https://doi.org/10.32702/2307-2105-2021.11.15
Ljubimova J., Fujita M., Ljubimov A., Torchilin V., Black K., Holler E. Poly(Malic Acid) Nanoconjugates Containing Various Antibodies and Oligonucleotides for Multitargeting Drug Delivery. Nanomedicine (London, England). 2008. 3(2): 247—265. https://doi.org/10.2217/17435889.3.2.247
Mullard A. 2024 FDA approvals. Nature Reviews Drug Discovery. 2025. 24: 75—82. https://doi.org/10.1038/d41573-025-00001-5
Riabtseva A., Mitina N., Boiko N., Garasevich S., Yanchuk I., Stoika R., Slobodyanyuk O., Zaichenko A. Structural and Colloidal-Chemical Characteristics of Nanosized Drug Delivery Systems Based on Pegylated Comb-like Carriers. Chemistry & Chemical Technology. 2012. 6(3): 291—295. https://doi.org/10.23939/chcht06.03.291
Senkiv Y., Riabtseva A., Heffeter P., Boiko N., Kowol C.R., Jungwith U., Shlyakhtina Y., Garasevych S.G., Mitina N., Berger W., Zaichenko A., Stoika R. Enhanced anticancer activity and circumvention of resistance mechanisms by novel polymeric/phospholipidic nanocarriers of doxorubicin. Journal of Biomedical Nanotechnology. 2014. 10(7): 1369—1381. https://doi.org/10.1166/jbn.2014.1864
Heffeter P. et al. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019. Journal of Biomedical Nanotechnology. 2014. 10(5): 877—884. https://doi.org/10.1166/jbn.2014.1763
Panchuk R. et al. Cannabimimetic N-Stearoylethanolamine as "Double-Edged Sword" in Anticancer Chemotherapy: Proapoptotic Effect on Tumor Cells and Suppression of Tumor Growth versus Its Bio-Protective Actions in Complex with Polymeric Carrier on General Toxicity of Doxorubicin In Vivo. Pharmaceutics. 2023. 15(3): 835. https://doi.org/10.3390/pharmaceutics15030835
Stoika R. (ed.) Multifunctional nanomaterials for biology and medicine: molecular design, synthesis and application. Kyiv: Naukova Dumka, 2017 (in Ukrainian).
Stoika R. (ed.) Biomedical Nanomaterials. From design and synthesis to imaging, application and environmental impact. Springer Cham, 2021. https://doi.org/10.1007/978-3-030-76235-3
Stoika R. (ed.) Biomedizinische Nanomaterialien. Vom Design und der Synthese bis hin zu Bildgebung, Anwendung und Umweltauswirkungen. Springer Cham, 2024. https://doi.org/10.1007/978-3-031-61877-2
Ivasechko I. et al. Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). European Journal of Medicinal Chemistry. 2023. 252. https://doi.org/10.1016/j.ejmech.2023.115304
Fu Z., Li S., Han S., Shi C., Zhang Yu. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy. 2022. 7: 93. https://doi.org/10.1038/s41392-022-00947-7
Wang L., Yang X., Li X., Stoika R., Wang X., Lin H., Ma Y., Wang R., Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. New Journal of Chemistry. 2020. 44(33): 14024—14034. https://doi.org/10.1039/D0NJ01645D
