A breakthrough in spatial structure prediction and computational design of proteins, or whether we can trust artificial intelligence predictions

Authors

DOI:

https://doi.org/10.15407/visn2025.02.016

Keywords:

Nobel Prize in Chemistry 2024, David Baker, Demis Hassabis, John M. Jumper, protein design, protein structure prediction.

Abstract

The authors of the article analyze the 2024 Nobel Prize in Chemistry, which was awarded to American biochemist and computational biologist David Baker for "computer-aided protein design ", as well as to representatives of Google DeepMind: British artificial intelligence systems specialist Demis Hassabis and American chemist and computer scientist John M. Jumper for "protein structure prediction". The achievements of the Nobel laureates in the field of computational protein design and structure prediction have opened a new era of biochemical and biological research, which, combined with the use of artificial intelligence tools, will have far-reaching consequences for humanity.

References

Huang B. et al. Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms. Genomics, Proteomics & Bioinformatics. 2023. 21(5): 913—925. https://doi.org/10.1016/j.gpb.2022.11.014

Pearce R., Zhang Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 2021. 297(1): 100870. https://doi.org/10.1016/j.jbc.2021.100870

Chou P.Y., Fasman G.D. Prediction of protein conformation. Biochemistry. 1974. 13(2): 222—245. https://doi.org/10.1021/bi00699a002

Regan L., DeGrado W.F. Characterization of a helical protein designed from first principles. Science. 1988. 241(4868): 976—978. https://doi.org/10.1126/science.3043666

Dahiyat B.I., Mayo S.L. De novo protein design: fully automated sequence selection. Science. 1997. 278(5335): 82—87. https://doi.org/10.1126/science.278.5335.82

Duan Y., Kollman P.A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998. 282(5389): 740—744. https://doi.org/10.1126/science.282.5389.740

Göbel U., Sander C., Schneider R., Valencia A. Correlated mutations and residue contacts in proteins. Proteins. 1994. 18(4): 309—317. https://doi.org/10.1002/prot.340180402

Qian N., Sejnowski T.J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 1988. 202(4): 865—884. https://doi.org/10.1016/0022-2836(88)90564-5

Sklar J. QnAs with Demis Hassabis and John M. Jumper: Winners of the 2023 Albert Lasker Basic Medical Research Award. Proc. Natl. Acad. Sci. 2023. 120(39): e2313816120. https://doi.org/10.1073/pnas.2313816120

Tunyasuvunakool K. et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021. 596(7873): 590—596. https://doi.org/10.1038/s41586-021-03828-1

Simons K.T., Bonneau R., Ruczinski I., Baker D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins. 1999. 3: 171—176. https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.3.co;2-q

Jones T.A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986. 5(4): 819—822. https://doi.org/10.1002/j.1460-2075.1986.tb04287.x

Cooper S., Khatib F., Treuille A., Barbero J., Lee J., Beenen M., Leaver-Fay A., Baker D., Popović Z., Players F. Predicting protein structures with a multiplayer online game. Nature. 2010. 466(7307): 756—760. https://doi.org/10.1038/nature09304

Kuhlman B., Dantas G., Ireton G.C., Varani G., Stoddard B.L., Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science. 2003. 302(5649): 1364—1368. https://doi.org/10.1126/science.1089427

Röthlisberger D. et al. Kemp elimination catalysts by computational enzyme design. Nature. 2008. 453(7192): 190—195. https://doi.org/10.1038/nature06879

Tinberg C.E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013. 501(7466): 212—216. https://doi.org/10.1038/nature12443

Langan R.A. et al. De novo design of bioactive protein switches. Nature. 2019. 572(7768): 205—210. https://doi.org/10.1038/s41586-019-1432-8

Bale J.B., Gonen S., Liu Y., Sheffler W., Ellis D., Thomas C., Cascio D., Yeates T.O., Gonen T., King N.P., Baker D. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science. 2016. 353(6297): 389—394. https://doi.org/10.1126/science.aaf8818

Humphreys I.R. et al. Computed structures of core eukaryotic protein complexes. Science. 2021. 374(6573): eabm4805. https://doi.org/10.1126/science.abm4805

AI's potential to accelerate drug discovery needs a reality check. Nature. 2023. 622(7982): 217. https://doi.org/10.1038/d41586-023-03172-6

Agard D.A., Bowman G.R., DeGrado W., Dokholyan N.V., Zhou H.X. Solution of the protein structure prediction problem at last: crucial innovations and next frontiers. Fac. Rev. 2022. 11: 38. https://doi.org/10.12703/r-01-0000020

Arnold C. AlphaFold touted as next big thing for drug discovery — but is it? Nature. 2023. 622(7981): 15—17. https://doi.org/10.1038/d41586-023-02984-w

Ren F. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02143-0

Mullard A. When can AI deliver the drug discovery hits? Nat. Rev. Drug Discov. 2024. 23(3): 159—161. https://doi.org/10.1038/d41573-024-00036-0

Callaway E. 'A landmark moment': scientists use AI to design antibodies from scratch. Nature. 2024. Mar 19. https://doi.org/10.1038/d41586-024-00846-7

Callaway E. How AlphaFold and other AI tools could help us prepare for the next pandemic. Nature. 2023. 622(7983): 440—441. https://doi.org/10.1038/d41586-023-03201-4

Dolgin E. 'Remarkable' AI tool designs mRNA vaccines that are more potent and stable. Nature. 2023. May 2. https://doi.org/10.1038/d41586-023-01487-y

Ko K.T. et al. Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies. Nat. Commun. 2022. 13(1): 5603. https://doi.org/10.1038/s41467-022-33379-6

Callaway E. AlphaFold tool pinpoints protein mutations that cause disease. Nature. 2023. Sep 19. https://doi.org/10.1038/d41586-023-02943-5

Topol E.J. The revolution in high-throughput proteomics and AI. Science. 2024. 385(6716): eads5749. https://doi.org/10.1126/science.ads5749

Eisenstein M. AI under the microscope: the algorithms powering the search for cells. Nature. 2023. 623(7989): 1095—1097. https://doi.org/10.1038/d41586-023-03722-y

Prillaman M. Is ChatGPT making scientists hyper-productive? The highs and lows of using AI. Nature. 2024. 627(8002): 16—17. https://doi.org/10.1038/d41586-024-00592-w

Conroy G. How ChatGPT and other AI tools could disrupt scientific publishing. Nature. 2023. 622(7982): 234—236. https://doi.org/10.1038/d41586-023-03144-w

Savage N. Drug discovery companies are customizing ChatGPT: here's how. Nat. Biotechnol. 2023. 41(5): 585—586. https://doi.org/10.1038/s41587-023-01788-7

Callaway E. Could AI-designed proteins be weaponized? Scientists lay out safety guidelines. Nature. 2024. 627(8004): 478. https://doi.org/10.1038/d41586-024-00699-0

Turing A.M. Computing machinery and intelligence. Mind. 1950. LIX(59): 433—460. https://doi.org/10.1093/mind/LIX.236.433

ChatGPT is a black box: how AI research can break it open. Nature. 2023. 619(7971): 671—672. https://doi.org/10.1038/d41586-023-02366-2

Published

2025-02-24