The role of microRNAs in post-transcriptional gene regulation, or how small worms caused a big breakthrough in genetics

Nobel Prize in Physiology or Medicine for 2024

Authors

DOI:

https://doi.org/10.15407/visn2024.12.003

Keywords:

Nobel Prize in Physiology or Medicine 2024, Victor Ambros, Gary Ruvkun, microRNA, regulation of gene activity.

Abstract

The Nobel Prize in Physiology or Medicine in 2024 was awarded to two American scientists: Victor Ambros, a professor at the University of Massachusetts Medical School in Worcester, and Gary Ruvkun, a molecular biologist at Massachusetts General Hospital and professor of genetics at Harvard Medical School in Boston, “for their discovery of microRNA and its role in post-transcriptional gene regulation”. As stated in the press release of the Nobel Committee, their groundbreaking discovery revealed a completely new vital regulatory mechanism used in cells to control gene activity. MicroRNAs have proven to be fundamentally important for the development and functioning of multicellular organisms, including the humans. It is now known that the human genome codes for over one thousand microRNAs. The discoveries by this year's Nobel Laureates have revealed an entirely new dimension to our understanding of the regulation of gene activity.

References

Ambros V., Horvitz H.R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984. 226(4673): 409—416. https://doi.org/10.1126/science.6494891

Ruvkun G., Ambros V., Coulson A., Waterston R., Sulston J., Horvitz H.R. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics. 1989. 121(3): 501—516. https://doi.org/10.1093/genetics/121.3.501

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993. 75(5): 843—854. https://doi.org/10.1016/0092-8674(93)90529-y

Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993. 75(5): 855—862. https://doi.org/10.1016/0092-8674(93)90530-4

Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998. 391(6669): 806—811. https://doi.org/10.1038/35888

Hamilton A.J., Baulcombe D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999. 286(5441): 950—952. https://doi.org/10.1126/science.286.5441.950

Grishok A., Pasquinelli A.E., Conte D., Li N., Parrish S., Ha I., Baillie D.L., Fire A., Ruvkun G., Mello C.C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001. 106(1): 23—34. https://doi.org/10.1016/S0092-8674(01)00431-7

Moss E.G., Lee R.C., Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997. 88(5): 637—646. https://doi.org/10.1016/s0092-8674(00)81906-6

Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000. 403(6772): 901—906. https://doi.org/10.1038/35002607

Pasquinelli A.E., Reinhart B.J., Slack F., Martindale M.Q., Kuroda M.I., Maller B., Hayward D.C., Ball E.E., Degnan B., Müller P., Spring J., Srinivasan A., Fishman M., Finnerty J., Corbo J., Levine M., Leahy P., Davidson E., Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000. 408(6808): 86—89. https://doi.org/10.1038/35040556

Klass M., Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature. 1976. 260(5551): 523—525. https://doi.org/10.1038/260523a0

Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993. 366(6454): 461—464. https://doi.org/10.1038/366461a0

Lee S.S., Kennedy S., Tolonen A.C., Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003. 300(5619): 644—647. https://doi.org/10.1126/science.1083614

Nair P. Profile of Gary Ruvkun. PNAS. 2011. 108(37): 15043—15045. https://doi.org/10.1073/pnas.1111960108

Melo J.A., Ruvkun G. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell. 2012. 149(2): 452—466. https://doi.org/10.1016/j.cell.2012.02.050

Liu S., da Cunha A.P., Rezende R.M., Cialic R., Wei Z., Bry L., Comstock L.E., Gandhi R., Weiner H.L. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 2016. 19(1): 32—43. https://doi.org/10.1016/j.chom.2015.12.005

Pfeffer S., Zavolan M., Grässer F.A., Chien M., Russo J.J., Ju J., John B., Enright A.J., Marks D., Sander C., Tuschl T. Identification of virus-encoded microRNAs. Science. 2004. 304(5671): 734—736. https://doi.org/10.1126/science.1096781

Moran Y., Agron M., Praher D., Technau U. The evolutionary origin of plant and animal microRNAs. Nat. Ecol. Evol. 2017. 1(3): 27. https://doi.org/10.1038/s41559-016-0027

DeVeale B., Swindlehurst-Chan J., Blelloch R. The roles of microRNAs in mouse development. Nat. Rev. Genet. 2021. 22(5): 307—323. https://doi.org/10.1038/s41576-020-00309-5

Bernstein E., Kim S.Y., Carmell M.A., Murchison E.P., Alcorn H., Li M.Z., Mills A.A., Elledge S.J., Anderson K.V., Hannon G.J. Dicer is essential for mouse development. Nat. Genet. 2003. 35(3): 215—217. https://doi.org/10.1038/ng1253

Koralov S.B., Muljo S.A., Galler G.R., Krek A., Chakraborty T., Kanellopoulou C., Jensen K., Cobb B.S., Merkenschlager M., Rajewsky N., Rajewsky K. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 2008. 132(5): 860—874. https://doi.org/10.1016/j.cell.2008.02.020

Wang H. A review of nanotechnology in microRNA detection and drug delivery. Cells. 2024. 13(15): 1277. https://doi.org/10.3390/cells13151277

Gao F., Kataoka M., Liu N. et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat. Commun. 2019. 10: 1802. https://doi.org/10.1038/s41467-019-09530-1

Glaser V. Tapping miRNA-regulated pathways. Genetic Engineering & Biotechnology News. 2008. 28(5). https://www.genengnews.com/insights/tapping-mirna-regulated-pathways/

Check Hayden E. Thousands of proteins affected by miRNAs. Nature. 2008. 454(7204): 562. https://doi.org/10.1038/454562b

Grillone K., Caridà G., Luciano F., Cordua A., Di Martino M.T., Tagliaferri P., Tassone P. A systematic review of non-coding RNA therapeutics in early clinical trials: a new perspective against cancer. J. Transl. Med. 2024. 22(1): 731. https://doi.org/10.1186/s12967-024-05554-4

Lucas T., Schäfer F., Müller P., Eming S.A., Heckel A., Dimmeler S. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat. Commun. 2017. 8: 15162. https://doi.org/10.1038/ncomms15162

Fang Y., Fullwood M.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016. 14(1): 42—54. https://doi.org/10.1016/j.gpb.2015.09.006

Published

2024-12-19

How to Cite

Romaniuk, S. I., & Komisarenko, S. V. . (2024). The role of microRNAs in post-transcriptional gene regulation, or how small worms caused a big breakthrough in genetics: Nobel Prize in Physiology or Medicine for 2024. Visnik Nacional Noi Academii Nauk Ukrai Ni, (12), 3–16. https://doi.org/10.15407/visn2024.12.003