Models and methods of artificial intelligence in spacecraft motion control tasks

Transcript of scientific report at the meeting of the Presidium of NAS of Ukraine, September 4, 2024

Authors

DOI:

https://doi.org/10.15407/visn2024.10.044

Abstract

The report presents important research results of scientists from the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine on the development of models and methods of artificial intelligence for solving relevant applied tasks of mechanics related to motion control of advanced spacecraft. Potential applications of the results include, in particular, solving the problem of space debris and improving the efficiency of orbital services.

References

Voulodimos A., Doulamis N., Doulamis A., Protopapadakis E. Deep learning for computer vision: a brief review. Computational Intelligence and Neuroscience. 2018. https://doi.org/10.1155/2018/7068349

Pierson H., Gashler M. Deep learning in robotics: a review of recent research. Adv. Robotics. 2017. 31(16): 821—835. https://doi.org/10.1080/01691864.2017.1365009

Sallab A.E., Abdou M., Perot E., Yogamani S. Deep reinforcement learning framework for autonomous driving. Electronic Imaging. 2017. 19: 70—76. https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023

Izzo D., Märtens M., Pan B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics. 2019. 3: 287—299. https://doi.org/10.1007/s42064-018-0053-6

Khoroshylov S.V., Redka M.O. Deep learning for space guidance, navigation, and control. Space Science and Technology. 2021. 27(6): 38—52. https://doi.org/10.15407/knit2021.06.038

Russell S.J., Norvig P. Artificial intelligence: a modern approach. Pearson education, 2010.

Mitchell T.M. Machine Learning. New York: McGraw Hill, 1997.

Liou J.-C., Anilkumar A.K., Bastida Virgili B., Hanada T., Krag H., Lewis H., Raj M., Rao M., Rossi A., Sharma R. Stability of the future LEO environment — an IADC comparison study. In: Proc. of the 6th European Conference on Space Debris (22—25 April 2013, Darmstadt). https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/199

Bombardelli C., Peláez J. Ion beam shepherd for contactless space debris removal. J. Guid. Contr. Dynam. 2011. 34(3): 916—920. https://doi.org/10.2514/1.51832

Khoroshylov S. Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronautica. 2019. 164: 254—261. https://doi.org/10.1016/j.actaastro.2019.08.016

Khoroshylov S. Relative control of an ion beam shepherd satellite in eccentric orbits. Acta Astronautica. 2020. 176: 89—98. https://doi.org/10.1016/j.actaastro.2020.06.027

Goodfellow I., Bengio Y., Courville A. Deep Learning. The MIT Press, 2016.

Redka M.O., Khoroshylov S.V. Determination of the force impact of an ion thruster plume on an orbital object via deep learning. Space Science and Technology. 2022. 28(5): 15—26. https://doi.org/10.15407/knit2022.05.015

Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica. 2016. 119(2-3): 241—251. https://doi.org/10.1016/j.actaastro.2015.11.020

Alpatov A.P., Cichocki F., Fokov A.A., Khoroshylov S.V., Merino M., Zakrzhevskii A.E. Algorithm for determination of force transmitted by plume of ion thruster to orbital object using photo camera. In: Proc. 66th Int. Astronautical Congress (Jerusalem, Israel, 2015). P. 2239—2247.

Redka M.O., Khoroshylov S.V. Convolutional Neural Networks for Determining the Ion Beam Impact on a Space Debris Object. Sci. Innov. 2023. 19(6): 19—30. https://doi.org/10.15407/scine19.06.019

Sutton R.S., Barto A.G. Reinforcement Learning: an Introduction. MIT Press, 1998.

Khoroshylov S.V., Redka M.O. Intelligent control of spacecraft attitude using reinforcement leaning. Technical Mechanics. 2019. (4): 29—43. https://doi.org/10.15407/itm2019.04.029

Khoroshylov S.V., Redka M.O. Relative control of an underactuated spacecraft using reinforcement learning. Technical Mechanics. 2020. (4): 43—54. https://doi.org/10.15407/itm2020.04.043

Khoroshylov S.V., Wang C. Spacecraft relative on-off control via reinforcement learning. Space Science and Technology. 2024. 30(2): 3—14. https://doi.org/10.15407/knit2024.02.003

Published

2024-10-28