Modern technologies of 3D printing, microwave processing and spark-plasma sintering for the manufacture of products from composite materials based on refractory compounds

According to the materia

Authors

DOI:

https://doi.org/10.15407/visn2024.05.092

Keywords:

nanomaterials, 3D printing, Robocasting, high-melting-point compounds, microwave sintering, ilmenite, spark-plasma sintering, auxetics, wear resistance.

Abstract

The report presents the most important results of fundamental and applied research conducted at the Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, on the development of modern technologies for the synthesis and consolidation of composite materials based on high-melting-point compounds for the manufacture of products that are operated in conditions of extreme temperatures, loads and aggressive environments, as well as the latest materials for 3D printing using Robocasting and FDM technologies. Novel developments in the processing industry are presented, which involve the introduction of environmentally friendly and energy-efficient ore processing technologies, which is of particular importance for the development of the competitiveness of export-oriented sectors of the Ukrainian economy in the post-war period.

References

Myslyvchenko O., Litvyn R., Krushynska L., Zgalat-Lozynskyy O. Phase transformations of ilmenite ore during microwave treatment at a frequency of 2.45 GHz under the influence of sucrose. Materialia. 2022. 22: 101417. https://doi.org/10.1016/j.mtla.2022.101417

Myslyvchenko O.M., Litvin R.V., Zgalat-Lozynskyy O.B. Oxidation of the Irshansk Ilmenite Ore in Microwave Heating. Powder Metall. Met. Ceram. 2022. 61: 414—423. https://doi.org/10.1007/s11106-023-00328-x

Zgalat-Lozinskii O.B., Kolesnichenko V.G., Zamula M.V., Solyanik L.V., Garbuz V.V., Klochkov L.A., Dubovitskaya N.V., Ragulya A.V. Thermochemical microwave treatment of refractory nanopowders. Powder Metall. Met. Ceram. 2013. 52: 137—143. https://doi.org/10.1007/s11106-013-9506-x

Ragulya A.V., Zgalat-Lozinskii O.B. Sintering of Refractory Compound Nanocrystalline Powders. Part 1. Storage and Preliminary Heat Treatment of Titanium Nitride Nanocrystalline Powders. Powder Metall. Met. Ceram. 2001. 40: 471—477. https://doi.org/10.1023/A:1014335506115

Zgalat-Lozynskyy O.B., Tischenko N.I., Varchenko V.T., Ragulya A.V., Polotai A. Tribological Behaviour of Si3N4-Based Nanocomposites. Tribology International. 2015. 91: 85—93. https://doi.org/10.1016/j.triboint.2015.06.027

Zgalat-Lozynskyy O.B., Apurbba K.S., Yehorov I.I., Varchenko V.T., Suresh K.S. Wear-Resistant TiN–20 wt.% Si3N4 and TiN–20 wt.% TiB2 Composites Produced by Microwave Sintering. Powder Metall. Met. Ceram. 2021. 59: 611—620. https://doi.org/10.1007/s11106-021-00196-3

Zgalat-Lozynskyy O., Andrzejczuk M., Varchenko V., Herrmann M., Ragulya A., Polotai A. Superplastic deformation of Si3N4 based nanocomposites reinforced by nanowhiskers. Materials Science & Engineering. 2014. 606: 144—149. https://doi.org/10.1016/j.msea.2014.03.109

Zgalat-Lozynskyy O., Kud I., Ieremenko L., Krushynska L., Zyatkevych D., Grinkevych K., Myslyvchenko O., Danylenko V., Sokhan S., Ragulya A. Synthesis and spark plasma sintering of Si3N4–ZrN self-healing composites. Journal of the European Ceramic Society. 2022. 42(7): 3192—3203. https://doi.org/10.1016/j.jeurceramsoc.2022.02.033

Lytvyn R., Kud I., Myslyvchenko O., Medyukh R., Krushynska L., Zgalat-Lozynskyy O. Synthesis of highly disperse NbSi2–Si3N4 and Si3N4–NbN composite powders. International Journal of Applied Ceramic Technologies. 2024. Special issue. https://doi.org/10.1111/ijac.14683

Kud I., Ieremenko L.I., Krushynska L.A., Zyatkevych D.P., Zgalat-Lozynskyi O.B., Shyrokov O.V. Synthesis and Consolidation of Powders Based on Si3N4–Zr. In: Fesenko O., Yatsenko L. (eds). Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-52268-1_2

Kud І.V., Ieremenko L.І., Krushynska L.А., Zyatkevych D.P., Zgalat-Lozynskyy О.B., Shyrokov О.V., Protsenko L.S. Synthesis of Si3N4-ZrN composite powder without subsequent milling. Dopov. Nac. Akad. Nauk Ukr. 2020. (1): 54—60. http://dx.doi.org/10.15407/dopovidi2020.01.054

Zgalat-Lozynskyy O.B., Ragulya A.V., Herrmann M., Andrzejczuk M., Polotai A. Structure and mechanical properties of spark plasma sintered TiN-based nanocomposites. Archives of Metallurgy and Materials. 2012. 57(3): 853—858. http://dx.doi.org/10.2478/v10172-012-0093-5

Zgalat-Lozynskyy O.B., Ragulya A.V., Herrmann M. Spark plasma sintering of TiCN nanopowders in non-linear heating and loading regimes. Journal of the European Ceramic Society. 2011. 31: 809—813. https://doi.org/10.1016/j.jeurceramsoc.2010.11.030

Kovalchenko M.S., Lytvyn R.V., Kud I.V., Zgalat-Lozynskyy O.B. Densification Kinetics of the TiB2–20 wt.% MoSi2 Composite During Nonisothermal Spark Plasma Sintering. Powder Metall. Met. Ceram. 2023. 62: 32—40. https://doi.org/10.1007/s11106-023-00367-4

Ragulya A.V., Zgalat-Lozinskii O.B., Skorokhod V.V. Sintering of Refractory Compounds Nanocrystalline Powders. Part 2. Non-Isothermal Sintering of Titanium Nitride Powder. Powder Metall. Met. Ceram. 2001. 40: 573—581. https://doi.org/10.1023/A:1015279919863

Zgalat-Lozinskii O.B. Nanocomposites Based on Refractory Compounds, Consolidated by Rate-Controlled and Spark-Plasma Sintering (Review). Powder Metall. Met. Ceram. 2014. 53: 19—30. https://doi.org/10.1007/s11106-014-9583-5

Zgalat-Lozynskyy O., Ieremenko L., Tkachenko I., Grinkevich K., Ivanchenko S., Zelinskiy A., Shpakova G., Ragulya A. Tribological Properties of ZrN–Si3N4–TiN Composites Consolidated by Spark Plasma Sintering. Powder Metall. Met. Ceram. 2022. 60: 597—607. https://doi.org/10.1007/s11106-022-00272-2

Zamula M.V., Derevyanko A.V., Kolesnichenko V.G., Samelyuk A.V., Zgalat-Lozinskii O.B., Ragulya A.V. Electric-discharge sintering of TiN-AlN nanocomposites. Powder Metall. Met. Ceram. 2007. 46: 325—331. https://doi.org/10.1007/s11106-007-0052-2

Kolesnichenko V.G., Popov V.P., Zgalat-Lozinskii O.B., Klochkov L.A., Lobunets T.F., Raichenko A.I., Ragulya A.V. Field assisted sintering of nanocrystalline titanium nitride powder. Powder Metall. Met. Ceram. 2011. 50: 157. https://doi.org/10.1007/s11106-011-9313-1

Zamula M.V., Derevyanko A.V., Kolesnichenko V.G., Zgalat-Lozinskii O.B., Ragulya A.V. Production of Products of Various Shapes From Si3N4-Based Refractory Compounds by Spark Plasma Sintering. Powder Metall. Met. Ceram. 2015. 54: 8—15. https://doi.org/10.1007/s11106-015-9673-z

Kolesnichenko V.G., Zgalat-Lozinskii O.B., Varchenko V.T., Herrmann M., Ragulya A.V. Friction and Wear of TiN–Si3N4 Nanocomposites Against ShKh15 Steel. Powder Metall. Met. Ceram. 2015. 53: 680—687. https://doi.org/10.1007/s11106-015-9663-1

Zgalat-Lozynskyy O.B., Ragulya A.V. Laser Sintering of Multilayer Gradient Materials. In: Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology. NATO Science. Series II. Vol. 16. Springer, Dordrecht, 2000. P. 151—159. http://dx.doi.org/10.1007/978-94-010-0702-3_16

Zgalat-Lozynskyy O.B. Materials and Techniques for 3D Printing in Ukraine (Overview). Powder Metall. Met. Ceram. 2022. 61: 398—413. https://doi.org/10.1007/s11106-023-00327-y

Derevianko O., Derevianko O., Zakiev V., Zgalat-Lozynskyy O. 3D Printing of Porous Glass Products Using the Robocasting Technique. Powder Metall. Met. Ceram. 2022. 60: 546—555. https://doi.org/10.1007/s11106-022-00267-z

Zgalat-Lozynskyy O.B., Matviichuk O.O., Tolochyn O.I., Ievdokymova O.V., Zgalat-Lozynska N.O., Zakiev V.I. Polymer Materials Reinforced with Silicon Nitride Particles for 3D Printing. Powder Metall. Met. Ceram. 2021. 59: 515—527. https://doi.org/10.1007/s11106-021-00189-2

Zgalat-Lozynskyy O.B., Matviichuk O.O., Litvyn R.V., Myslyvchenko O.M., Zgalat-Lozynska N.O. Microwave Sintering of 3D Printed Composites from Polymers Reinforced with Titanium Nitride Particles. Powder Metall. Met. Ceram. 2023. 62: 164—173. https://doi.org/10.1007/s11106-023-00380-7

Zgalat-Lozynskyy O., Ragulya A. Microwave Sintering of Chessboard-Structured TiN–Si3N4 Composites Reinforced by Nanofibers. Powder Metall. Met. Ceram. 2022. 61: 32—39. https://doi.org/10.1007/s11106-022-00292-y

Tolochyna O., Zgalat-Lozynska N., Podrezov Yu., Verbylo D., Tolochyn O., Zgalat-Lozynskyy O. The role of flexible polymer composite materials properties in energy absorption of three-dimensional auxetic lattice structures. Materials Today Communications. 2023. 37: 107370. https://doi.org/10.1016/j.mtcomm.2023.107370

Published

2024-05-28

How to Cite

Zgalat-Lozynskyy, O. B. . (2024). Modern technologies of 3D printing, microwave processing and spark-plasma sintering for the manufacture of products from composite materials based on refractory compounds: According to the materia. Visnik Nacional Noi Academii Nauk Ukrai Ni, (5), 91–98. https://doi.org/10.15407/visn2024.05.092