Cold gases of neutral atoms in laser fields — new systems for quantum computing, understanding and predictions of unique physical phenomena

According to the materials of report at the meeting of the Presidium of the NAS of Ukraine, July 10, 2024

Authors

  • Andrii G. Sotnikov National Science Center "Kharkiv Institute of Physics and Technology" of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.15407/visn2024.09.059

Keywords:

quantum gases, neutral atoms, Bose-Einstein condensation, laser fields, ultraslow light, optical lattices, magnetism, orbital ordering, universal quantum simulators.

Abstract

The report provides an overview of the progress in the research on unique effects in quantum gases of atoms at low temperatures. Particular attention is paid to the phenomenon of Bose-Einstein condensation and a wide range of systems where this phenomenon emerges and leads to important physical effects, consequences and applications. In the presence of additional laser fields that form spatially-periodic standing waves, it is possible to model complex quantum systems from condensed matter, where the phenomena of superfluidity, magnetism, charge and orbital ordering, superconductivity, etc. are observed. We indicate the more frequent realizations of cold atom systems as universal quantum simulators, as well as the prospects of the latest theoretical approaches of tensor networks for applications in quantum computing.

 

References

Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science. 1995. 269: 198. https://doi.org/10.1126/science.269.5221.198

Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995. 75: 3969. https://doi.org/10.1103/PhysRevLett.75.3969

Hau L., Harris S., Dutton Z. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999. 397: 594. https://doi.org/10.1038/17561

Slyusarenko Yu.V., Sotnikov A.G. Unique effects in a response of ultracold atomic gases of alkali-metal atoms in the state with a Bose-Einstein condensate to the perturbation by an external electromagnetic field. Visn. Nac. Akad. Nauk Ukr. 2016. (7): 19—26. https://doi.org/10.15407/visn2016.07.019

Peletmynskiy O.S., Slyusarenko Yu.V., Sotnikov A.G. Theory of exotic states in quantum Fermi and Bose systems. Kyiv, Naukova Dumka, 2023 [in Ukrainian]. https://doi.org/10.15407/978-966-00-1851-8

Demokritov S., Demidov V., Dzyapko O., Melkov G.A., Serga A.A., Hillebrands B., Slavin A.N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature. 2006. 443: 430. https://doi.org/10.1038/nature05117

Kasprzak J., Richard M., Kundermann S., Baas A., Jeambrun P., Keeling J.M.J., Marchetti F.M., Szymańska M.H., André R., Staehli J.L., Savona V., Littlewood P.B., Deveaud B., Dang L.S. Bose–Einstein condensation of exciton polaritons. Nature. 2006. 443: 409. https://doi.org/10.1038/nature05131

Klaers J., Schmitt J., Vewinger F., Weitz M. Bose–Einstein condensation of photons in an optical microcavity. Nature. 2010. 468: 545. https://doi.org/10.1038/nature09567

Boychenko N.P., Slyusarenko Y. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases. Condens. Matter Phys. 2015. 18(4): 43002. https://doi.org/10.5488/CMP.18.43002

Sotnikov A., Kuneš J. Field-induced exciton condensation in LaCoO3. Sci. Rep. 2016. 6: 30510. https://doi.org/10.1038/srep30510

Feynman R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982. 21: 467. https://doi.org/10.1007/BF02650179

Gross C., Bloch I. Quantum simulations with ultracold atoms in optical lattices. Science. 2017. 357: 995. https://doi.org/10.1126/science.aal3837

Sotnikov A., Hofstetter W. Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices. Phys. Rev. A. 2014. 89: 063601. https://doi.org/10.1103/PhysRevA.89.063601

Sotnikov A. Critical entropies and magnetic-phase-diagram analysis of ultracold three-component fermionic mixtures in optical lattices. Phys. Rev. A. 2015. 92: 023633. https://doi.org/10.1103/PhysRevA.92.023633

Sotnikov A., Darkwah Oppong N., Zambrano Y., Cichy A. Orbital ordering of ultracold alkaline-earth atoms in optical lattices. Phys. Rev. Research. 2020. 2: 023188. https://doi.org/10.1103/PhysRevResearch.2.023188

Lukin I., Sotnikov A., Leamer J., Magann A., Bondar D. Spectral gaps of two- and three-dimensional many-body quantum systems in the thermodynamic limit. Phys. Rev. Research. 2024. 6: 023128. https://doi.org/10.1103/PhysRevResearch.6.023128

Patra S., Jahromi S., Singh S., Orús R. Efficient tensor network simulation of IBM's largest quantum processors. Phys. Rev. Research. 2024. 6: 013326. https://doi.org/10.1103/PhysRevResearch.6.013326

Published

2024-09-24

How to Cite

Sotnikov, A. G. . (2024). Cold gases of neutral atoms in laser fields — new systems for quantum computing, understanding and predictions of unique physical phenomena: According to the materials of report at the meeting of the Presidium of the NAS of Ukraine, July 10, 2024. Visnyk of the National Academy of Sciences of Ukraine, (9), 59–64. https://doi.org/10.15407/visn2024.09.059