Cold gases of neutral atoms in laser fields — new systems for quantum computing, understanding and predictions of unique physical phenomena
According to the materials of report at the meeting of the Presidium of the NAS of Ukraine, July 10, 2024
DOI:
https://doi.org/10.15407/visn2024.09.059Keywords:
quantum gases, neutral atoms, Bose-Einstein condensation, laser fields, ultraslow light, optical lattices, magnetism, orbital ordering, universal quantum simulators.Abstract
The report provides an overview of the progress in the research on unique effects in quantum gases of atoms at low temperatures. Particular attention is paid to the phenomenon of Bose-Einstein condensation and a wide range of systems where this phenomenon emerges and leads to important physical effects, consequences and applications. In the presence of additional laser fields that form spatially-periodic standing waves, it is possible to model complex quantum systems from condensed matter, where the phenomena of superfluidity, magnetism, charge and orbital ordering, superconductivity, etc. are observed. We indicate the more frequent realizations of cold atom systems as universal quantum simulators, as well as the prospects of the latest theoretical approaches of tensor networks for applications in quantum computing.
References
Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science. 1995. 269: 198. https://doi.org/10.1126/science.269.5221.198
Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995. 75: 3969. https://doi.org/10.1103/PhysRevLett.75.3969
Hau L., Harris S., Dutton Z. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999. 397: 594. https://doi.org/10.1038/17561
Slyusarenko Yu.V., Sotnikov A.G. Unique effects in a response of ultracold atomic gases of alkali-metal atoms in the state with a Bose-Einstein condensate to the perturbation by an external electromagnetic field. Visn. Nac. Akad. Nauk Ukr. 2016. (7): 19—26. https://doi.org/10.15407/visn2016.07.019
Peletmynskiy O.S., Slyusarenko Yu.V., Sotnikov A.G. Theory of exotic states in quantum Fermi and Bose systems. Kyiv, Naukova Dumka, 2023 [in Ukrainian]. https://doi.org/10.15407/978-966-00-1851-8
Demokritov S., Demidov V., Dzyapko O., Melkov G.A., Serga A.A., Hillebrands B., Slavin A.N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature. 2006. 443: 430. https://doi.org/10.1038/nature05117
Kasprzak J., Richard M., Kundermann S., Baas A., Jeambrun P., Keeling J.M.J., Marchetti F.M., Szymańska M.H., André R., Staehli J.L., Savona V., Littlewood P.B., Deveaud B., Dang L.S. Bose–Einstein condensation of exciton polaritons. Nature. 2006. 443: 409. https://doi.org/10.1038/nature05131
Klaers J., Schmitt J., Vewinger F., Weitz M. Bose–Einstein condensation of photons in an optical microcavity. Nature. 2010. 468: 545. https://doi.org/10.1038/nature09567
Boychenko N.P., Slyusarenko Y. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases. Condens. Matter Phys. 2015. 18(4): 43002. https://doi.org/10.5488/CMP.18.43002
Sotnikov A., Kuneš J. Field-induced exciton condensation in LaCoO3. Sci. Rep. 2016. 6: 30510. https://doi.org/10.1038/srep30510
Feynman R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982. 21: 467. https://doi.org/10.1007/BF02650179
Gross C., Bloch I. Quantum simulations with ultracold atoms in optical lattices. Science. 2017. 357: 995. https://doi.org/10.1126/science.aal3837
Sotnikov A., Hofstetter W. Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices. Phys. Rev. A. 2014. 89: 063601. https://doi.org/10.1103/PhysRevA.89.063601
Sotnikov A. Critical entropies and magnetic-phase-diagram analysis of ultracold three-component fermionic mixtures in optical lattices. Phys. Rev. A. 2015. 92: 023633. https://doi.org/10.1103/PhysRevA.92.023633
Sotnikov A., Darkwah Oppong N., Zambrano Y., Cichy A. Orbital ordering of ultracold alkaline-earth atoms in optical lattices. Phys. Rev. Research. 2020. 2: 023188. https://doi.org/10.1103/PhysRevResearch.2.023188
Lukin I., Sotnikov A., Leamer J., Magann A., Bondar D. Spectral gaps of two- and three-dimensional many-body quantum systems in the thermodynamic limit. Phys. Rev. Research. 2024. 6: 023128. https://doi.org/10.1103/PhysRevResearch.6.023128
Patra S., Jahromi S., Singh S., Orús R. Efficient tensor network simulation of IBM's largest quantum processors. Phys. Rev. Research. 2024. 6: 013326. https://doi.org/10.1103/PhysRevResearch.6.013326