Pro- and antioxidant systems and pathological processes in humans

Authors

  • О.H. Reznikov Komissarenko Institute of Endocrinology and Metabolism of NAMS of Ukraine, Kyiv
  • О.М. Polumbryk National University of Food Technologies, Kyiv
  • Y.H. Balion Komissarenko Institute of Endocrinology and Metabolism of NAMS of Ukraine, Kyiv
  • M.О. Polumbryk National University of Food Technologies, Kyiv

DOI:

https://doi.org/10.15407/visn2014.10.017

Keywords:

oxidative stress, antioxidants, mechanism of action, hypoelementosis, microelements, pathogenesis

Abstract

The review contains a new literature data and results of own investigations of antioxidant induced stress, which can cause structure changes of nucleic acids as well as amino acids, proteins, lipids and induce cancer and cardiovascular diseases, diabetes, autism and atherosclerosis development. The mechanisms of action of the antioxidants on pathological processes and modern approaches in food products development, which are fortified by microelements and ways of oxidative stress overcoming have been described.

References

Baraboy V.A., Reznikov O.H. Physiology, biochemistry and psychology of stress (Kyiv: Interservis, 2013).

Durackova Z. Some current insights into oxidative stress. Physiol. Res. 2010. 59: 459–469.

Fisher-Wellman K., Bell H.K., Bloomer R.J. Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disorders. Oxid. Med. Cell. Longev. 2009. 2: 43–51. http://dx.doi.org/10.4161/oxim.2.1.7732

Laranjinha J. Oxidative stress: from 1980’s to recent update. In: Oxidative Stress. Inflammation and Angiogenesis in the Metabolic Syndrome (N.Y., 2009). P. 21–32. http://dx.doi.org/10.1007/978-1-4020-9701-0_2

Min D.B., Doff I.M. Chemistry and Reaction of Singlet Oxygen in Foods. Comp. Rev. Food Sci. Food Saf. 2002. 1(2): 58–72. http://dx.doi.org/10.1111/j.1541-4337.2002.tb00007.x

Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007. 39(1): 44–84. http://dx.doi.org/10.1016/j.biocel.2006.07.001

Lobo V., Phatak A., Chandra N. Free radicals and functional foods: impact on human health. Pharmacol. Rev. 2010. 4(2): 118–126. http://dx.doi.org/10.4103/0973-7847.70902

Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation (Geneva: WHO, 2003). http://www.whglibdoc.who.int/trs/WHOTRS916.pdf.

Choe E., Min D.B. Mechanisms of antioxidants in the oxidation of foods. Comp. Rev. Food Sci. Food Saf. – 2009. 8(3): 345–358. http://dx.doi.org/10.1111/j.1541-4337.2009.00085.x

Polumbryk M., Ivanov S., Polumbryk O. Antioxidants in food systems. Mechanism of action. Ukr. J. Food Sci. 2013. 1(1): 15–40. http://dspace.nuft.edu.ua/jspui/bitstream/123456789/11000/1/Polumbryk_M_O.pdf.

Durackova Z. Oxidants, antioxidants and oxidative stress. In: Mitochondrial Medicine (ed. A. Gvordjakova) (Springer, 2008). Р. 19–54. http://dx.doi.org/10.1007/978-1-4020-6714-3_2

Carocho M., Ferreira I.C.F.R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013. 57: 15–25. http://dx.doi.org/10.1016/j.fct.2012.09.021

Gao L.P., Wei H.L., Zhao H.S., Xiao S.Y., Zheng R.L. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmacia. 2005. 50: 62–65.

Leopoldini M., Russo N., Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011. 125: 288–306. http://dx.doi.org/10.1016/j.foodchem.2010.08.012

Maurya D.K., Devasagayam T.P. Antioxidant and prooxidant nature of hydroxyl cinnamic acid derivatives ferulic and caffeic acids. J. Appl. Toxicol. 2005. 25(4): 535–48.

Pietta P.G. Flavonoids as antioxidants. J. Nat. Food. 2000. 63: 1035–42. http://dx.doi.org/10.1021/np9904509

Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011. 82: 513–23. http://dx.doi.org/10.1016/j.fitote.2011.01.018

Maksyutyna N.P., Moybenko A.A., Mokhart N.A. Bioflavonoids like organoprotektors (Kyiv: Naukova Dumka, 2012).

Ametov A.S., Solov'yeva O.L. Problemy endokrinologii. 2011. 57(6): 52–56. http://dx.doi.org/10.14341/probl201157652-56

Young A.J., Lowe G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001. 382: 20–27. http://dx.doi.org/10.1006/abbi.2000.2149

Krinsky N.I., Yeum K.J. Carotenoid–radical interactions. Biochem. Biophys. Res. Commun. 2003. 305: 754–60. http://dx.doi.org/10.1016/S0006-291X(03)00816-7

Palozza P. Prooxidant actions of carotenoids in biologic systems. Nutr. Rev. 1998. 56: 257–65. http://dx.doi.org/10.1111/j.1753-4887.1998.tb01762.x

Moini H., Pacher L., Saris N.E. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 2002. 182: 84–90. http://dx.doi.org/10.1006/taap.2002.9437

Murakami M., Yamaguchi T., Takamura H. Effects of ascorbic acid and L-tocopherol on antioxidant activity of polyphenolic compounds. J. Food Sci. 2003. 68: 1622–25. http://dx.doi.org/10.1111/j.1365-2621.2003.tb12302.x

Lu J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol. Med. 2010. 14: 840–60. http://dx.doi.org/10.1111/j.1582-4934.2009.00897.x

Hirsch E.C., Faucheux B.A. Iron metabolism and Parkinson’s disease. Movem. Disord. 1998. 13: 39–45.

Cuajungco M.P., Faget K.Y., Huang X., Tanzi R.E., Bush A.I. Metal chelation as a potential therapy for Alzheimer’s disease. Ann. N.Y. Acad. Sci. 2000. 920: 292–304. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06938.x

Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrile in health and disease. Physiol. Rev. 2007. 87: 315–424. http://dx.doi.org/10.1152/physrev.00029.2006

Viappiani S., Schulz R. Detection of specific nitrotyrosine – modified proteins as a marker of oxidative stress in cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2006. 290: 2167–68. http://dx.doi.org/10.1152/ajpheart.00128.2006

Polumbryk M.O. Carbohydrates in food and health (Kyiv: Akademperiodyka, 2011). [in Ukrainian].

Villanueva C., Kross R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012. 13: 2091–109. http://dx.doi.org/10.3390/ijms13022091

Duarte T.L., Lunec J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reaction of vitamin C. Free Radic. Res. 2005. 39: 671–80. http://dx.doi.org/10.1080/10715760500104025

Rababah T.M., Hettiarachchy N.S., Horax R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu cola and ginkgo extracts, vitamin E and tret-butylhydroquinone. J. Agric. Food Chem. 2004. 52: 5183–86. http://dx.doi.org/10.1021/jf049645z

Mashkovskiy M.D. Therapeutic Pharmaceutical Agents (Moscow: Novaya Volna, 2005).

Bibik Ye.YU., Fomina K.A., Yushchak M.V. Ukrayinskiy medychniy almanakh. 2009. 12(1): 213–17.

Burlakova Ye.B. Rossiyskiy khimicheskiy zhurnal (Russian Chemical Journal). 2007. 51(1): 3–12.

Fragg C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005. 26: 235–44. http://dx.doi.org/10.1016/j.mam.2005.07.013

Eide D.J. The oxidative stress of Zinc deficiency. Metallomics. 2011. 3: 1124–29. http://dx.doi.org/10.1039/c1mt00064k

Tronko M.D., Polumbryk M.O., Kovbasa V.M., Kravchenko V.I., Balion Y.H. The Biological Role of Zinc on Human Body and Necessity of Sufficient Level of its Intake. Visn. Nac. Akad. Nauk Ukr. 2013. (6): 21–31. http://www.visnyk-nanu.org.ua/en/node/1042.

Serdyuk A.M., Hulich M.P., Kaplunenko V.H., Kosinov M.V. Zhurnal Natsionalnoi akademii medychnykh nauk Ukrainy. 2010. 16(1): 107–14.

Published

2014-10-25