Optical properties of nanomaterials

Authors

  • I.S. Chekman Bogomoletz National Medical University, Kyiv
  • V.A. Pokrovskiy Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv
  • D.S. Savchenko Bogomoletz National Medical University, Kyiv

DOI:

https://doi.org/10.15407/visn2014.10.030

Keywords:

optical properties, quantum size effects, optical tags, metal nanoparticles, carbon nanomaterials, nanocomposites

Abstract

Literature data and the results of authors’ researches concerning the optical properties of nanomaterials are summarized in the review. We consider quantum size effects of nanoparticles in resonant-tunneling diodes, quantum-dot lasers and hypersensitive photodetectors. It was given an account of possible metal nanoparticles use as a new class labels in the study of biological processes in various tissues, due to the intensity of light scattering by nanometals that significantly exceed the brightest emission intensity of fluorescent molecules. In addition, the optical properties of fullerene C60 were considered, with their possible applications in medical practice.

References

Paton B.Ye., Moskalenko V.F., Chekman I.S.Visn. Nac. Akad. Nauk Ukr. 2009. (6): 76-80.

Abramov N.V., Bagatskaya A.N., Belyakova L.A. Nanomaterials and nanocomposites in medicine, biology, ecology (Kyiv: Naukova Dumka, 2011).

Mazurenko V.V., Rudenko A.N., Mazurenko V.G. The nanoparticles, nanomaterials, nanotechnology (Ekaterinburg, 2009).

Nosach L.V., Savchenko D.S., Vlasenko O.M. Ukrayinskiy naukovo-medychnyy zhurnal (Ukrainian Scientific Medical Journal). 2011. (4): 78.

Kreibig U., Vollmer M. Optical Properties of Metal Clusters. (Springer, 1995). http://dx.doi.org/10.1007/978-3-662-09109-8

Serov I.N., Margolin V.I., Zhabrev V.A. Inzhenernaya fizika (Engineering Physics). 2004. (1): 18–32.

Shen M., Cao W. Electronic band-structure engineering of GaAs/AlxGa1-xAs quantum well superlattices with substructures. Mater. Eng. B. 2003. 103: 122–27. http://dx.doi.org/10.1016/S0921-5107(03)00159-4

Romeira B., Javaloyes J., Ironside C. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt. Express. 2013. 21(18): 20931–40. http://dx.doi.org/10.1364/OE.21.020931

Cheng H.C., Lee C.P. Investigation of quantum dot passively mode-locked lasers with excited-state transition. Opt Express. 2013. 21(22): 26113–22. http://dx.doi.org/10.1364/OE.21.026113

Cheng S.H., Weng T.M., Lu M.L., Tan W.-C., Chen J.-Y., Chen Y.-F. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 2013. 2694. doi: 10.1038/srep02694. http://dx.doi.org/10.1038/srep02694

Ōsawa E. Looking back the most beautiful molecule C60: after quarter century of discovery. Visn. Nac. Akad. Nauk Ukr. 2009. (9): 27-35. http://www.visnyk-nanu.org.ua/en/node/1118.

Yang G., Si Y., Su Z. Theoretical study on the chiroptical optical properties of chiral fullerene C60 derivative. J. Phys. Chem. A. 2011. 115(46): 13356–63. http://dx.doi.org/10.1021/jp204860x

Shen Y., Nakanishi T. Fullerene assemblies toward photo-energy conversions. Phys. Chem. Chem. Phys. 2014. 16(16): 7199–204. http://dx.doi.org/10.1039/c4cp00221k

Chekman I.S., Ulberh Z.R., Malanchuk V.O. Nanosciences, Nanobiology, Nanopharmaceutics (Kyiv, Poligraf+, 2012).

Pokrovskiy V.O., Grebenyuk A.G., Demianenko E.M., Kuts V.S., Karpenko O.B., Snegir S.V., Kartel N.T. Laser desorption/ionization of fullerenes: experimental and theoretical study. Chem. Phys. Technol. Surf. 2013. 4(1): 78–91

Snegir S.V., Gromovyi T.Y., Pokrovskiy V.O. Laser desorption/ionization mass spectrometry of fullerene C60 deposited onto the polished steel and silicon targets. Phys. Met. Adv. Technol. 2006. 28: 255–261.

Asada R., Liao F., Saitoh Y. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol. Cell. Biochem. 2014. 390(1–2): 175–184. http://dx.doi.org/10.1007/s11010-014-1968-8

Shi J., Yu X., Wang L. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomater. 2013. 34(37): 9666–77. http://dx.doi.org/10.1016/j.biomaterials.2013.08.049

Ostroukhov N., Sleptsov V., Tyanhynskyy A. Fotonika. 2011. 29(5): 38–41.

Ivanova V.S. Introduction to the interdisciplinary nanomaterials (Moscow, Sains-Press, 2005).

Dhawan A., Muth J. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix. Nanotechnol. 2006. 17: 2504–11. http://dx.doi.org/10.1088/0957-4484/17/10/011

Chien-Ying T., Tien-Li C., Ramesh U. Electrical detection of protein using gold nanoparticles and nanogap electrodes. Jpn. J. Appl. Phys. 2005. 44: 5711–16. http://dx.doi.org/10.1143/JJAP.44.5711

Yershov B.G. Rossiyskiy khimicheskiy zhurnal. 2001. 45(3): 20–30.

Krasteva N., Guse B., Besnard I. Gold nanoparticle/PPI-dendrimer based chemiresistors. Vapor-sensing properties as a function of the dendrimer size. Sens. Actuat. B. 2003. 92(1–2): 137–43. http://dx.doi.org/10.1016/S0925-4005(03)00250-8

Haes A.J., Hall W.P., Chang L. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett. 2004. 4(6): 1029–34. http://dx.doi.org/10.1021/nl049670j

Savicheva I.S. Resonant scattering of radiation by nanoparticles of different shapes (Samara, 2013).

Lim S., Mar W., Matheu P. et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmonpolaritons in gold nanoparticles. J. Appl. Phys. 2007. 101. doi: 10.1063/1.2733649. http://dx.doi.org/10.1063/1.2733649

Seok-Soon K., Seok-In N., Jang J. et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 2008. 93. doi: 10.1063/1.2967471. http://dx.doi.org/10.1063/1.2967471

Proshkin V.A. PhD (Phys.). 2008.

Kapustianyk V. Nanoferroics: new effects, properties, possibilities. Journal of Physical Studies. 2013. 17(1): 1702–22.

Vladimirov A.G., Korovin S.B., Pustovoy V.I. In: Rusnanotech-08: Proc. I Int. Conf. (3–5 Dec., 2008,Moscow).

Dudar S.S., Sveshnikova Ye.B., Yermolayev V.L. Optika i Spektroskopiya (Optics and Spectroscopy). 2010. 109(4): 605–17.

Chekman Í.S., Radzíêvska S.O. Slovnik-dovídnik z nanonauki (Kyiv: Zadruga, 2013).

Liao X., Chen Y., Qin M. et al. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Talanta. 2013. 117: 203–08. http://dx.doi.org/10.1016/j.talanta.2013.08.051

Qu L.L., Song Q.X., Li Y.T. et al. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal. Chim. Acta. 2013. 792: 86–92. http://dx.doi.org/10.1016/j.aca.2013.07.017

Liu C., Sahoo S., Tsao M. Acridine orange coated magnetic nanoparticles for nucleus labeling and DNA adsorption. Colloids Surf. B. 2013. 115: 150–56. http://dx.doi.org/10.1016/j.colsurfb.2013.11.003

Rogers N., Claire S., Harris R. et al. High coating of Ru(II) complexes on gold nanoparticles for single particle luminescence imaging in cells. Chem. Commun. (Camb). 2014. 50(5): 617–19. http://dx.doi.org/10.1039/C3CC47606E

Liu G., Long Y., Choi Y. et al. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nature Methods. 2007. 4: 1015–17. http://dx.doi.org/10.1038/nmeth1133

Published

2014-10-25