Purposeful Search and Constructing of New Medications (Rational Drug Design)
DOI:
https://doi.org/10.15407/visn2014.04.048Keywords:
rational drug design, development of new medications, biological targets, computerized modeling of drugsAbstract
This article is a review of methods and ways of searching and constructing of new medicines with using of modern computerized technologies. Types of methodic, which are divided by their key options, are also reviewed. Examples of using of rational drug design method and basic software programs, which are used by developers, are given. The short review of history of formation of the method is presented on this article as well.
References
Bader R.F.W. Atoms in Molecules. (Oxford, 1990).
Lobanov V.V., Strizhak P.E. Lectures on the theory of chemical bonding and bases chemisorption. (Kyiv: Naukova Dumka, 2009). [in Ukrainian].
Nebesna T.Yu., Chekman I.S. Naukovyj visnyk NMU Bogomoltsa. 2006. (4): 79–86. [in Ukrainian].
Solovyov M.E., Soloviev M.M. Computational Chemistry. (Moscow: Solon-Press, 2005). [in Russian].
Chekman I.S. Quantum Pharmacology. (Kyiv: Naukova Dumka, 2012). [in Ukrainian].
Chekman I.S., Kazakova O.O., Nebesna T.Yu. Zhurnal Natsionalnoyi akademiyi medychnykh nauk Ukrayiny. 2008. 14(4): 636–49. [in Ukrainian].
Ruiz J., Lopez M., Mila J. QSAR and conformational analysis of the antiinflamatory agent amfenac and analogues. J. Comput. Aided Mol. Des. 1993. 7: 183–198. http://dx.doi.org/10.1007/BF00126444
Atkins P.W., Friedman R.S. Molecular Quantum Mechanics. (Oxford, 1997).
Dineshkumar B., Vigneshkumar P., Bhuvaneshwaran S.P., Analava Mitra. Advanced drug designing softwares and their applications in medical research. Int. J. Pharmacy Pharm. Sci. 2010. 2(3): 16–18.
Seddon G., Lounnas V., McGuire R., van den Bergh T., Bywater R.P., Oliveira L., Vriend G. Design for ever, from hype to hope. J. Comput. Aided Mol. Des. 2012. 26: 137–50. http://dx.doi.org/10.1007/s10822-011-9519-9
Hol W.G.J. Protein crystallography and computer-graphics towards rational drug design. Angew. Chem. Int. Ed. Engl. 1986. 25: 767–778. http://dx.doi.org/10.1002/anie.198607673
Schaftenaar G., de Vlieg J. Quantum mechanical polar surface area. J. Comput. Aided Mol. Des. 2012. 26(3): 311–318. http://dx.doi.org/10.1007/s10822-012-9557-y
Hansson T., Marelius J., Aqvist J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des. 1998. 12: 27–35. http://dx.doi.org/10.1023/A:1007930623000
Stewart J.J.P. Special issue – Mopac – a semiempirical molecular-orbital program. J. Comput. Aided Mol. Des. 1990. 4: 1–45. http://dx.doi.org/10.1007/BF00128336
Allen F.H., Harris S.E., Taylor R. Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques. J. Comput. Aided Mol. Des. 1996. 10: 247–254. http://dx.doi.org/10.1007/BF00355046
Bostrom J., Norrby P.O., Liljefors T. Conformational energy penalties of protein-bound ligands. J. Comput. Aided Mol. Des. 1998. 12: 383–96. http://dx.doi.org/10.1023/A:1008007507641
Uversky V.N., Dunker A.K. Understanding protein non-folding. Biochim. Biophys. Acta. 2010. 1804: 1231–64.
Morley S.D., Afshar M. Validation of an empirical RNA-ligand scoring function for fast flexible docking using Ribodock. J. Comput. Aided Mol. Des. 2004. 18: 445–51. http://dx.doi.org/10.1023/B:JCAM.0000035199.48747.1e
Dobeš P., Fanfrlík J., Rezáč J., Otyepka M., Hobza P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. J. Comput. Aided Mol. Des. 2011. 25(3): 223–35. http://dx.doi.org/10.1007/s10822-011-9413-5
Jain A.N. Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J. Comput. Aided Mol. Des. 2009. 23: 355–74. http://dx.doi.org/10.1007/s10822-009-9266-3
Shoichet B.K., Leach A.R., Kuntz I.D. Ligand solvation in molecular docking. Protein Sruct. Funct. Genet. 1999. 34: 4–16. http://dx.doi.org/10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6
Brown N., McKeay B., Fasteiger J. The de novo design of median molecules within a property range of interest. J. Comput. Aided Mol. Des. 2004. 17: 761–71. http://dx.doi.org/10.1007/s10822-004-6986-2
Blum LC., Reymond JL. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 2009. 131: 8732–8733. http://dx.doi.org/10.1021/ja902302h
Walters W.P., Murcko M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev. 2002. 54: 255–71. http://dx.doi.org/10.1016/S0169-409X(02)00003-0
Cotton F.A., Wilkinson G., Murillo C.A. Advanced Inorganic Chemistry. (New York: Wiley, 1999).
Preeth M., Shobana J., Asent Mary J. Structure based drug designing of new acetyl cholinesterase inhibitors for Alzheimer’s disease. J. Biosci. Tech. 2010. 1(4): 162–69.
Papp B., Notebaart R.A., Pál C. Systems-biology approaches for predicting genomic evolution. Nat. Rev. Genet. 2011. 12: 591–602. http://dx.doi.org/10.1038/nrg3033
Breimer D.D. PK/PD modelling and beyond: impact on drug development. Pharm. Res. 2008. 25: 2720–22. http://dx.doi.org/10.1007/s11095-008-9717-x
Sun H., Scott D.O. Structure-based drug metabolism predictions for drug design. Chem. Biol. Drug Des. 2010. 75(1): 3–17. http://dx.doi.org/10.1111/j.1747-0285.2009.00899.x
Pratt W.B., Taylor P. Principles of drug action: the basis of pharmacology. (New York: Churchill Livingstone, 1990).
Raychaudhuty C., Pal D. Use of vertex index in structure-activity analysis and design of molecules. Curr. Comput. Aided Drug Des. 2012. 8(2): 128–34. http://dx.doi.org/10.2174/157340912800492410
Villoutreix B.O., Renault N., Lagorce D. Free resources to assist structure-based virtual ligand screening experiments. Curr. Protein Pept. Sci. 2007. 8(4): 381–411. http://dx.doi.org/10.2174/138920307781369391