Higgs Boson: Anticipation, Search, and Discovery

Authors

  • E.V. Gorbar Taras Shevchenko National University of Kyiv, Kyiv
  • V.P. Gusynin Bogolyubov Institute for Theoretical Physics of NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2014.03.031

Keywords:

Nobel Prize, Higgs boson, Large Hadron Collider

Abstract

The 2013 Nobel Prize in Physics was awarded jointly to well-known European physicists — Belgian François Englert and British Peter W. Higgs “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider”.

References

Yang C., Mills R. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 1954. 96: 191. http://doi.org/10.1103/PhysRev.96.191

Utiyama R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956. 101: 1597. http://doi.org/10.1103/PhysRev.101.1597

O’Raifeartaigh L. The Dawning of Gauge Theory. (Princeton: Princeton Univ., 1997).

Landau L.D. Journal of Experimental and Theoretical Physics. 1937. 7(19): 627.

Ginzburg V.L., Landau L.D. Journal of Experimental and Theoretical Physics. 1950. 20: 1064.

Sooryakumar R., Klein M.V. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 1980. 45: 660. http://doi.org/10.1103/PhysRevLett.45.660

Littlewood P.B., Varma C.M. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 1981. 47: 811. http://doi.org/10.1103/PhysRevLett.47.811

Nambu Y., Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 1961. 122: 345. http://doi.org/10.1103/PhysRev.122.345

Goldstone J. Field theories with superconductor solutions. Nuovo Cimento. 1961. 19: 154. http://doi.org/10.1007/BF02812722

Goldstone J., Salam A., Weinberg S. Broken symmetries. Phys. Rev. 1962. 127: 965. http://doi.org/10.1103/PhysRev.127.965

Volkov D.V., Akulov V.P. Is the neutrino a Goldstone particle? Phys. Lett. 1973. 46B: 109. http://doi.org/10.1016/0370-2693(73)90490-5

Schwinger J. Gauge invariance and mass. Phys. Rev. 1962. 125: 397. http://doi.org/10.1103/PhysRev.125.397

Anderson P. Plasmons, gauge invariance, and mass. Phys. Rev. 1963. 130: 439. http://doi.org/10.1103/PhysRev.130.439

Migdal A.A., Polyakov A.M. Journal of Experimental and Theoretical Physics. 1966. 51: 135.

Englert F., Brout R. Broken symmetry and the mass of gauge vector bosons. Phys. Rev. Lett. 1964. 13: 321. http://doi.org/10.1103/PhysRevLett.13.321

Higgs P.W. Broken symmetries and the masses of gauge particles. Phys. Rev. Lett. 1964. 13: 508. http://doi.org/10.1103/PhysRevLett.13.508

Higgs P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964. 12: 132. http://doi.org/10.1016/0031-9163(64)91136-9

Higgs P.W. Prehistory of the Higgs boson. C.R. Physique. 2007. 8: 970. http://doi.org/10.1016/j.crhy.2006.12.006

Weinberg S. A model of leptons. Phys. Rev. Lett. 1967. 19: 1264. http://doi.org/10.1103/PhysRevLett.19.1264

Published

2014-03-24