How the Cell Is Transporting the Synthesized Substances or Is It True That Time and Destination of «Intracellular Load» Cannot Be Changed

Authors

  • S.I. Romanyuk Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
  • S.V. Komisarenko Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/visn2014.01.080

Keywords:

vesicle traffic, Nobel Prize, J. Rothman, R. Schekman, T. Südhof

Abstract

The Nobel Prize in Physiology and Medicine 2013 was awarded to James E. Rothman, Randy W. Schekman, and Thomas C. Südhof with Nobel Committee motivation: “for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells”.

References

Press Release Nobel Committee. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/press.html.

Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980. 21(1): 205–15. http://doi.org/10.1016/0092-8674(80)90128-2

Block M.R., Glick B.S., Wilcox C.A. et al. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. PNAS. 1988. 85(21): 7852–56.http://doi.org/10.1073/pnas.85.21.7852

Weidman P.J., Melançon P., Block M.R., Rothman J.E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell. Biol. 1989. 108(5): 1589–96. http://doi.org/10.1083/jcb.108.5.1589

Oyler G.A., Higgins G.A., Hart R.A., Battenberg E., Billingsley M., Bloom F.E., Wilson M.C. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol. 1989. 109(6): 3039–52. http://doi.org/10.1083/jcb.109.6.3039

Inoue A., Obata K., Akagawa K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1 (syntaxin 1). J. Biol. Chem. 1992. 267(15): 10613–19.

Trimble W.S., Cowan D.M., Scheller R.H. VAMP-1: a synaptic vesicle-associated integral membrane protein. PNAS. 1988. 85(12): 4538–42. http://doi.org/10.1073/pnas.85.12.4538

Söllner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993. 362(6418): 318–24. http://doi.org/10.1038/362318a0

Gao Y., Zorman S., Gundersen G., Xi Z., Ma L., Sirinakis G., Rothman J.E., Zhang Y. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 2012. 337(6100): 1340–43. http://doi.org/10.1126/science.1224492

Brose N., Petrenko A.G., Südhof T.C., Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 1992. 256(5059): 1021–25. http://doi.org/10.1126/science.1589771

Hata Y., Slaughter C.A., Südhof T.C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature. 1993. 366(6453): 347–51. http://doi.org/10.1038/366347a0

McMahon H.T., Missler M., Li C., Südhof T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995. 83(1): 111–19. http://doi.org/10.1016/0092-8674(95)90239-2

Maximov A., Tang J., Yang X., Pang Z.P., Südhof T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science. 2009. 323(5913): 516–21. http://doi.org/10.1126/science.1166505

Wang Y., Okamoto M., Schmitz F., Hofmann K., Südhof T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature. 1997. 388(6642): 593–98. http://doi.org/10.1038/41580

Zhou P., Bacaj T., Yang X. et al. Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release. Neuron. 2013. 80(2): 470–83. http://doi.org/10.1016/j.neuron.2013.09.010

Südhof T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013. 80(3): 675–90. http:/doi.org/10.1016/j.neuron.2013.10.022

Zierath J.R., Lendahl U. Machinery regulating vesicle traffic, a major transport system in our cells. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/advanced-medicineprize2013.pdf.

Lashuel H.A, Hirling H. Rescuing defective vesicular trafficking protects against alpha-synuclein toxicity in cellular and animal models of Parkinson's disease. ACS Chem. Biol. 2006. 1(7): 420–24. http://doi.org/10.1021/cb600331e

Alter S.P., Lenzi G.M., Bernstein A.I., Miller G.W. Vesicular integrity in Parkinson's disease. Curr. Neurol. Neurosci. Rep. 2013. 13(7): 362. http://doi.org/10.1007/s11910-013-0362-3

Suzuki T., Araki Y., Yamamoto T., Nakaya T. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis. J. Biochem. 2006. 139(6): 949–55. http://doi.org/10.1093/jb/mvj121

Caviston J.P., Holzbaur E.L. Huntingtin as an essential integrator of intracellular vesicular trafficking // Trends Cell Biol. – 2009. – V. 19, N 4. – P. 147–155.

Krzewski K., Cullinane A.R. Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp. Cell. Res. 2013. 319(15): 2360–67. http://doi.org/10.1016/j.yexcr.2013.06.012

Ge J., Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol. 2011. 13(12): 1870–80. http://doi.org/10.1111/j.1462-5822.2011.01710.x

Rossetto O., de Bernard M., Pellizzari R., Vitale G., Caccin P., Schiavo G., Montecucco C. Bacterial toxins with intracellular protease activity. Clin. Chim. Acta. 2000. 291(2): 189–99. http://doi.org/10.1016/S0009-8981(99)00228-4

Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., De Camilli P., Südhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993. 365(6442): 160–63. http://doi.org/10.1038/365160a0

Published

2014-01-23