Nanochannels and Nanopores: Structure, Properties, Applications

Authors

  • I.S. Chekman Bogomolets National Medical University, Kyiv
  • E.V. Kostyuchenko Bogomolets National Medical University, Kyiv

DOI:

https://doi.org/10.15407/visn2013.08.034

Keywords:

nanochannels, nanopores, nanotubes, bionanopores, solid-state nanopores

Abstract

In this overview the results of research on the physical, physicochemical, chemical, biological, biochemical, pharmacological and toxicological properties of nanochannels and nanopores are summarized. Such studies are very promising, especially in the early diagnostics and treatment of malignant tumors. This subject matter has a great biological, medical, pharmaceutical, technical meaning, which makes it relevant to continue researches on the properties of nanochannels and nanopores for wider application in various fields of human activity, including the medical practice.

References

Jacobs K. Nano- and microfluidics. Preface. J. Phys. Condens. Matter. 2011. 23(18): 180301. http://doi.org/10.1088/0953-8984/23/18/180301

Li D. Nanochannel Fabrication. In: Encyclopedia of Microfluidics and Nanofluidics. (New York: Springer, 2008). http://doi.org/10.1007/978-0-387-48998-8_1080

Haque A., Kumar A. Nanochannels for Nanofluidics: Fabrication Aspects. In: Encyclopedia of Microfluidics and Nanofluidics. (New York: Springer, 2012).

Oxford Nanopore Technologies. http:// www.nanoporetech.com.

The Nanopore Site. http:// www.thenanoporesite.com.

Jiang Y., Liu N., Guo W., Xia F., Jiang L. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J. Am. Chem. Soc. 2012. 134(37): 15395–401. http://doi.org/10.1021/ja3053333

Shuba Y.M. Fundamentals of physiology of ion channels. (Kyiv: Naukova Dumka, 2010). [in Ukrainian].

Gache G. New Electric Properties of Nanostructures. Softpedia, 2007. http://news.softpedia.com/news/ New-Electric-Properties-for-the-Nanostructures-70865.shtml.

Rubio A., Chiodo L. Electronic Properties of Nanostructures. Nanostructural properties 2008/09. Lectures. http://nano-bio.ehu.es.

Tian Y., Wen L., Hou X. et al. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. Chemphyschem. 2012. 16: 2455–70. http://doi.org/10.1002/cphc.201200057

Hou X., Guo W., Jiang L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011. 40: 2385–401. http://doi.org/10.1039/c0cs00053a

Duan C., Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010. 5: 848–52. http://doi.org/10.1038/nnano.2010.233

Xu T., Zhao N., Ren F., Hourani R. Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. ACS Nano. 2011. 5(2): 1376–84. http://doi.org/10.1021/nn103083t

Pradeep H. Nanochannels: biological channel analogues. IET Nanobiotechnology. 2012. 6(2): 63–70. http://doi.org/10.1049/iet-nbt.2011.0033

Gordeeva A.V., Labas Y.A., Zvyagilskaya R.A. Apoptosis in Unicellular Organisms: Mechanisms and Evolution. Biochemistry (Moscow). 2004. 69(10): 1055-66. http://doi.org/10.1023/B:BIRY.0000046879.54211.ab

Ryzhov S.V., Novikov V.V. Rossiyskiy Bioterapevticheskiy Zhurnal. 2002. 1(3): 27–33. [in Russian].

Tian Y.Y., Xu D.D., Tian X., Cui F.A., Yuan H.Q., Leung W.N. Mitochondria-involved apoptosis induced by MPPa mediated photodynamic therapy. Laser Phys. Lett. 2008. 5. 746–52. http://doi.org/10.1002/lapl.200810052

Vladimirov Yu.A. Sorosovskiy obrazovatel'nyy zhurnal (Soros Educational Journal). 1998. (3): 20–27. [in Russian].

Hsia T.-C., Yang J.-S., Chen G.-W., Chiu T.H., Lu H.F., Yang M.D., Yu F.S., Liu K.C., Lai K.C., Lin C.C., Chung J.G. The Roles of Endoplasmic Reticulum Stress and Ca2+ on Rhein-induced Apoptosis in A-549 Human Lung Cancer Cells. Anticancer Research. 2009. 29(1): 309–18.

Bixler G.D., Bhushan B. Biofouling: lessons from nature. Phil. Trans. R. Soc. A. 2012. 370: 2381–417. http://doi.org/10.1098/rsta.2011.0502

Mussi V., Fanzio P., Firpo G., Repetto L., Valbusa U. Size and functional tuning of solid state nanopores by chemical functionalization. Nanotechnology. 2012. 23(43): 435301. http://doi.org/10.1088/0957-4484/23/43/435301

Esmaeilzadeh P., Fakhroueian Z., Jahanshahi M., Chamani M., Zamanizadeh H.R., Rasekh B. A synthetic garden of state of the art natural protein nanoarchitectures dispersed in nanofluids. J. Biomed. Nanotechnol. 2011. 7: 433–40. http://doi.org/10.1166/jbn.2011.1304

Cohen-Tanugi D., Grossman J.C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012. 12(7): 3602–08. http://doi.org/10.1021/nl3012853

Astier Y., Datas L., Carney R., Stellacci F, Gentile F, DiFabrizio E. Surface modified Si3N4 artificial nanopores for single surface modified gold nanoparticle scanning. Small. 2011. 7(4): 455–59. http://doi.org/10.1002/smll.201002113

Uzun O., Stellacci F., Astier Y. Single Gold Nanoparticle Capture and Release by the α-Hemolysin Protein Nanopore. Small. 2009. 5(11): 1273–78.

Lu B., Hoogerheide D.P., Zhao Q., Yu D. Effective driving force applied on DNA inside a solid-state na-nopore. Phys. Rev. E. 2012. 86: 011921. http://doi.org/10.1103/PhysRevE.86.011921

Bahrami A., Doğan F., Japrung D., Albrecht T. Solid-state nanopores for biosensing with submolecular resolution. Biochem. Soc. Trans. 2012. 40(4): 624–28. http://doi.org/10.1042/BST20120121

Albrecht T. How to Understand and Interpret Current Flow in Nanopore. Electrode Devices. ACS Nano. 2011. 5(8): 6714–25. http://doi.org/10.1021/nn202253z

Yemini M., Hadad B., Liebes Y., Goldner A., Ashkenasy N. The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology. 2009. 20(24): 245302. http://doi.org/10.1088/0957-4484/20/24/245302

Liebes Y., Hadad B., Ashkenasy N. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching. Nanotechnology. 2011. 22(28): 285303. http://doi.org/10.1088/0957-4484/22/28/285303

Novoselov K.S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011. 83: 837–49. http://doi.org/10.1103/RevModPhys.83.837

Novoselov K.S. Graphene: materials in the Flatland. Physics-Uspekhi (Advances in Physical Sciences). 2011. 54(12): 1299–1311. [in Russian]. http://doi.org/10.1142/s0217979211059085

Gusinin V.P., Loktev V.M., Sharapov S.G. Visn. Nac. Akad. Nauk Ukr. 2010. (12): 51-59. [in Ukrainian].

Garaj S., Hubbard W., Reina A., Kong J., Branton D., Golovchenko J.A. Graphene as a sub-nanometer trans-electrode membrane. Nature. 2010. 467: 190–93. http://doi.org/10.1038/nature09379

Wells D.B., Belkin M., Comer J., Aksimentiev A. Assessing Graphene Nanopores for Sequencing DNA. Nano Lett. 2012. 12(8): 4117–23. http://doi.org/10.1021/nl301655d

Hornblower B., Coombs A., Whitaker R.D., Kolomeisky A., Picone S.J., Meller A., Akeson M. Single-molecule analysis of DNA-protein complexes using nanopores. Nature Methods. 2007. 4: 315–17. http://doi.org/10.1038/nmeth1021

Comer J., Ho A., Aksimentiev A. Toward detection of DNA-bound proteins using solid-state nanopores: insights from computer simulations. Electrophoresis. 2012. 33(23): 3466–79. http://doi.org/10.1002/elps.201200164

Boukany P.E. et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 2011. 6: 747–54. http://doi.org/10.1038/nnano.2011.164

Kowalczyk S.W., Wells D.B., Aksimentiev A., Dekker C. Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 2012. 12(2): 1038–44. http://doi.org/10.1021/nl204273h

Chekman I.S. Nano Pharmacology. (Kyiv: Zadruga, 2011). [in Ukrainian].

Chekman I.S., Simonov P.V. Natural nanostructures and nanomechanisms. (Kyiv: Zadruga, 2011). [in Ukrainian].

Chekman I.S. Simonov P.V. Structure and function of biomembranes: influence of nanoparticles. Fiziolohichnyy zhurnal (Physiological journal). 2011. 57(6): 99–117. [in Ukrainian].

Published

2013-08-24