Nanochannels and Nanopores: Structure, Properties, Applications
DOI:
https://doi.org/10.15407/visn2013.08.034Keywords:
nanochannels, nanopores, nanotubes, bionanopores, solid-state nanoporesAbstract
In this overview the results of research on the physical, physicochemical, chemical, biological, biochemical, pharmacological and toxicological properties of nanochannels and nanopores are summarized. Such studies are very promising, especially in the early diagnostics and treatment of malignant tumors. This subject matter has a great biological, medical, pharmaceutical, technical meaning, which makes it relevant to continue researches on the properties of nanochannels and nanopores for wider application in various fields of human activity, including the medical practice.
References
Jacobs K. Nano- and microfluidics. Preface. J. Phys. Condens. Matter. 2011. 23(18): 180301. http://doi.org/10.1088/0953-8984/23/18/180301
Li D. Nanochannel Fabrication. In: Encyclopedia of Microfluidics and Nanofluidics. (New York: Springer, 2008). http://doi.org/10.1007/978-0-387-48998-8_1080
Haque A., Kumar A. Nanochannels for Nanofluidics: Fabrication Aspects. In: Encyclopedia of Microfluidics and Nanofluidics. (New York: Springer, 2012).
Oxford Nanopore Technologies. http:// www.nanoporetech.com.
The Nanopore Site. http:// www.thenanoporesite.com.
Jiang Y., Liu N., Guo W., Xia F., Jiang L. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J. Am. Chem. Soc. 2012. 134(37): 15395–401. http://doi.org/10.1021/ja3053333
Shuba Y.M. Fundamentals of physiology of ion channels. (Kyiv: Naukova Dumka, 2010). [in Ukrainian].
Gache G. New Electric Properties of Nanostructures. Softpedia, 2007. http://news.softpedia.com/news/ New-Electric-Properties-for-the-Nanostructures-70865.shtml.
Rubio A., Chiodo L. Electronic Properties of Nanostructures. Nanostructural properties 2008/09. Lectures. http://nano-bio.ehu.es.
Tian Y., Wen L., Hou X. et al. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. Chemphyschem. 2012. 16: 2455–70. http://doi.org/10.1002/cphc.201200057
Hou X., Guo W., Jiang L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011. 40: 2385–401. http://doi.org/10.1039/c0cs00053a
Duan C., Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010. 5: 848–52. http://doi.org/10.1038/nnano.2010.233
Xu T., Zhao N., Ren F., Hourani R. Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. ACS Nano. 2011. 5(2): 1376–84. http://doi.org/10.1021/nn103083t
Pradeep H. Nanochannels: biological channel analogues. IET Nanobiotechnology. 2012. 6(2): 63–70. http://doi.org/10.1049/iet-nbt.2011.0033
Gordeeva A.V., Labas Y.A., Zvyagilskaya R.A. Apoptosis in Unicellular Organisms: Mechanisms and Evolution. Biochemistry (Moscow). 2004. 69(10): 1055-66. http://doi.org/10.1023/B:BIRY.0000046879.54211.ab
Ryzhov S.V., Novikov V.V. Rossiyskiy Bioterapevticheskiy Zhurnal. 2002. 1(3): 27–33. [in Russian].
Tian Y.Y., Xu D.D., Tian X., Cui F.A., Yuan H.Q., Leung W.N. Mitochondria-involved apoptosis induced by MPPa mediated photodynamic therapy. Laser Phys. Lett. 2008. 5. 746–52. http://doi.org/10.1002/lapl.200810052
Vladimirov Yu.A. Sorosovskiy obrazovatel'nyy zhurnal (Soros Educational Journal). 1998. (3): 20–27. [in Russian].
Hsia T.-C., Yang J.-S., Chen G.-W., Chiu T.H., Lu H.F., Yang M.D., Yu F.S., Liu K.C., Lai K.C., Lin C.C., Chung J.G. The Roles of Endoplasmic Reticulum Stress and Ca2+ on Rhein-induced Apoptosis in A-549 Human Lung Cancer Cells. Anticancer Research. 2009. 29(1): 309–18.
Bixler G.D., Bhushan B. Biofouling: lessons from nature. Phil. Trans. R. Soc. A. 2012. 370: 2381–417. http://doi.org/10.1098/rsta.2011.0502
Mussi V., Fanzio P., Firpo G., Repetto L., Valbusa U. Size and functional tuning of solid state nanopores by chemical functionalization. Nanotechnology. 2012. 23(43): 435301. http://doi.org/10.1088/0957-4484/23/43/435301
Esmaeilzadeh P., Fakhroueian Z., Jahanshahi M., Chamani M., Zamanizadeh H.R., Rasekh B. A synthetic garden of state of the art natural protein nanoarchitectures dispersed in nanofluids. J. Biomed. Nanotechnol. 2011. 7: 433–40. http://doi.org/10.1166/jbn.2011.1304
Cohen-Tanugi D., Grossman J.C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012. 12(7): 3602–08. http://doi.org/10.1021/nl3012853
Astier Y., Datas L., Carney R., Stellacci F, Gentile F, DiFabrizio E. Surface modified Si3N4 artificial nanopores for single surface modified gold nanoparticle scanning. Small. 2011. 7(4): 455–59. http://doi.org/10.1002/smll.201002113
Uzun O., Stellacci F., Astier Y. Single Gold Nanoparticle Capture and Release by the α-Hemolysin Protein Nanopore. Small. 2009. 5(11): 1273–78.
Lu B., Hoogerheide D.P., Zhao Q., Yu D. Effective driving force applied on DNA inside a solid-state na-nopore. Phys. Rev. E. 2012. 86: 011921. http://doi.org/10.1103/PhysRevE.86.011921
Bahrami A., Doğan F., Japrung D., Albrecht T. Solid-state nanopores for biosensing with submolecular resolution. Biochem. Soc. Trans. 2012. 40(4): 624–28. http://doi.org/10.1042/BST20120121
Albrecht T. How to Understand and Interpret Current Flow in Nanopore. Electrode Devices. ACS Nano. 2011. 5(8): 6714–25. http://doi.org/10.1021/nn202253z
Yemini M., Hadad B., Liebes Y., Goldner A., Ashkenasy N. The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology. 2009. 20(24): 245302. http://doi.org/10.1088/0957-4484/20/24/245302
Liebes Y., Hadad B., Ashkenasy N. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching. Nanotechnology. 2011. 22(28): 285303. http://doi.org/10.1088/0957-4484/22/28/285303
Novoselov K.S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011. 83: 837–49. http://doi.org/10.1103/RevModPhys.83.837
Novoselov K.S. Graphene: materials in the Flatland. Physics-Uspekhi (Advances in Physical Sciences). 2011. 54(12): 1299–1311. [in Russian]. http://doi.org/10.1142/s0217979211059085
Gusinin V.P., Loktev V.M., Sharapov S.G. Visn. Nac. Akad. Nauk Ukr. 2010. (12): 51-59. [in Ukrainian].
Garaj S., Hubbard W., Reina A., Kong J., Branton D., Golovchenko J.A. Graphene as a sub-nanometer trans-electrode membrane. Nature. 2010. 467: 190–93. http://doi.org/10.1038/nature09379
Wells D.B., Belkin M., Comer J., Aksimentiev A. Assessing Graphene Nanopores for Sequencing DNA. Nano Lett. 2012. 12(8): 4117–23. http://doi.org/10.1021/nl301655d
Hornblower B., Coombs A., Whitaker R.D., Kolomeisky A., Picone S.J., Meller A., Akeson M. Single-molecule analysis of DNA-protein complexes using nanopores. Nature Methods. 2007. 4: 315–17. http://doi.org/10.1038/nmeth1021
Comer J., Ho A., Aksimentiev A. Toward detection of DNA-bound proteins using solid-state nanopores: insights from computer simulations. Electrophoresis. 2012. 33(23): 3466–79. http://doi.org/10.1002/elps.201200164
Boukany P.E. et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 2011. 6: 747–54. http://doi.org/10.1038/nnano.2011.164
Kowalczyk S.W., Wells D.B., Aksimentiev A., Dekker C. Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 2012. 12(2): 1038–44. http://doi.org/10.1021/nl204273h
Chekman I.S. Nano Pharmacology. (Kyiv: Zadruga, 2011). [in Ukrainian].
Chekman I.S., Simonov P.V. Natural nanostructures and nanomechanisms. (Kyiv: Zadruga, 2011). [in Ukrainian].
Chekman I.S. Simonov P.V. Structure and function of biomembranes: influence of nanoparticles. Fiziolohichnyy zhurnal (Physiological journal). 2011. 57(6): 99–117. [in Ukrainian].