The composite liquid fuel for use in the energy industry of Ukraine
DOI:
https://doi.org/10.15407/visn2022.10.059Keywords:
composite liquid fuel, water-coal fuel, oil-water-coal fuel, thermal power plantsAbstract
Energy complex enterprises operating on traditional hydrocarbon energy resources, including solid fuel (coal), annually produce tens of millions of tons of ash and slag waste (ASW) and hundreds of millions of cubic meters of gaseous emissions. To reduce the harmful impact on the environment and increase the efficiency of thermal power plants, it is proposed to use liquid composite fuel instead of pulverized and layered coal combustion. The expediency of using composite liquid fuel (CLF) in industrial power plants is substantiated. The advantages of using CLF as an energy fuel in comparison with traditional fuels are shown. A technological scheme for the preparation of composite fuel based on coal and liquid organic waste, with the addition of plasticizers and stabilizers, is proposed. This technology allows not only to dispose of production waste containing organic substances, but also to reduce the amount of harmful substances formed during the combustion of various types of fuel.
References
Perov M.O., Makarov V.M., Novytskyi I.Yu. Analysis of the demand of Ukrainian thermal power plants for steam coal with regard for requirements to fuel quality. Probl. Zagal'n. Energ. 2016. (3): 40—49. https://doi.org/10.15407/pge2016.03.028
Khalatov A.A. Energy sector of Ukraine: modern state and nearest prospects. Visn. Nac. Akad. Nauk Ukr. 2016. (6): 53—61. https://doi.org/10.15407/visn2016.06.053
Serdyuk O.S. Current status and development prospects of Ukrainian TPPs. Ekonomichnyy visnyk Donbasu. 2016. (3): 4—10 (in Ukrainian).
Volchyn I.A., Dunaevska N.I., Gaponych L.S., Chernyavskyi M.V., Topal O.I., Zasyadko Y.I. Perspektyvy vprovadzhennia chystykh vuhilnykh tekhnolohii v enerhetyku Ukrainy (Prospects for the introduction of clean coal technologies in the energy industry of Ukraine). Kyiv: GNOSIS, 2013. (in Ukrainian).
Makarov A.S., Kosygina I.M. The actual problems of the heat power industry of Ukraine and their solution. Energy Technologies & Resource Saving. 2019. (4): 13—17. https://doi.org/10.33070/etars.4.2019.02
Kurgankina M.A., Vershinina K.Yu., Ozerova I.P., Medvedev V.V. On the thermal power plants switching from traditional fuels to organic-water-coal fuel compositions. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. 329(9): 72—82 (in Russian).
Gorlov E.G. Composite water-containing fuels from coals and oil products. Khimiya tverdogo topliva. 2004. (6): 50—61 (in Russian).
Malyshev Yu.N. Ugol' i al'ternativnaya ekologicheski chistaya energetika. Obshcheekonomicheskiye aspekty (Coal and alternative clean energy. General economic aspects). Moscow, 2000 (in Russian).
Mokhov V.F., Gorlov E.G., Golovin G.S. Coal-hydrocarbon composite fuels from coals of Kuzbass. In: Chemistry and environmentally friendly technologies for the use of coal. Proc. Int. Conf. Moscow, 1999. P. 69—71 (in Russian).
Titov E.V., Khilko S.L. Production and use in the energy sector of environmentally friendly types of alternative fuels based on emulsions and suspensions. In: Donbas-2020: nauka i tekhnika – proizvodstvu. Proc. Sci. Conf. (5—6 February 2002, Donetsk). P. 626—631 (in Russian).
Grekhov L.V. Research and problems of creating a diesel engine on coal suspensions. Bezopasnost v tekhnosfere. 2007. (5): 33—36 (in Russian).
Makarov A.S. Prospects for the development and use of water-cooled fuel (review). Technologies & Resource Saving. 2018. (2): 3—9. https://doi.org/10.33070/etars.2.2018.01
Pinchuk V.A., Gubinsky M.V., Potapov B.B. Use of water-coal fuel and products of its processing in power engineering and metallurgy. Metalurhiina teplotekhnika. 2008. (1): 221—227 (in Russian).
Makarov A.S., Klishchenko R.E., Zavgorodni V.A., Makarova E.V. The impact of the water salt content on the properties of coal-aqueous suspensions. J. Water Chem. Technol. 2011. 33(6): 357—362. https://doi.org/10.3103/S1063455X11060026
Pilipenko A.T., Goronovsky I.T., Grebenyuk V.D., Zapolsky A.K., Kucheruk D.D., Maksin V.I., Rud A.M., Zagorodnyuk A.K. Kompleksnaya pererabotka shakhtnykh vod (Complex processing of mine waters). Kyiv, 1985 (in Russian).
Murko V.I., Fedyaev V.I., Karpenok V.I., Dzyuba D.A. Results of the study of harmful emissions from the combustion of suspension coal fuel. Zhurnal Sibirskogo federal'nogo universiteta. Tekhnika i tekhnologii. 2012. 5(5): 512 (in Russian).
Parres-Esclapez S., Illan-Gomez M.J., Salinas-Martinez de Licea C., Bueno-Lopez A. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Applied Catalysis B. 2010. 96(3-4): 370—378. https://doi.org/10.1016/j.apcatb.2010.02.034
Voznitsky I.V. Praktika ispolzovaniya morskikh topliv na sudakh (The practice of using marine fuels on ships). St. Petersburg, 2005 (in Russian).
BP Statistical Review of World Energy. 2016. http://oilproduction.net/files/especial-BP/bp-statistical-review-of-world-energy-2016-full-report.pdf
Tripathi A.K., Ojha D.K., Vinu R. Selective production of valuable hydrocarbons from waste motorbike engine oils via catalytic fast pyrolysis using zeolites. Journal of Analytical and Applied Pyrolysis. 2015. 114: 281—292. https://doi.org/10.1016/j.jaap.2015.06.009
Lam S.S., Liew K., Cheng C.K., Chase H.A. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Applied Catalysis B. 2015. 176-177(1): 601—617. https://doi.org/10.1016/j.apcatb.2015.04.014
Chayka O.G., Kovalchuk O.Z., Chayka Y.A. Monitoring the formation of waste oils. Proceedings of Lviv Polytechnic National University. 2009. (644): 221—223 (in Ukrainian).
International Energy Outlook 2013, with projections to 2040. Washington: U.S. Energy Information Administration, 2013. https://www.eia.gov/outlooks/ieo/pdf/0484(2013).pdf
Kapustina V., Havukainen J., Virkki-Hatakka T., Horttanainen M. System analysis of waste oil management in Finland. Waste Management & Research. 2014. 32(4): 297—303. https://doi.org/10.1177/0734242X145236
