Quantum computer: The state of the problem in the world and in Ukraine

Transcript of the report at the meeting of the Presidium of NAS of Ukraine, December 8, 2021

Authors

DOI:

https://doi.org/10.15407/visn2022.02.035

Keywords:

quantum computer, quantum technologies, spin qubit, flow qubit, superconducting single photon detectors, quantum metamaterials

Abstract

The report analyzes the current state of the problem of creating a quantum computer as a real working device, which the world scientific community identifies as one of the most important fundamental tasks of physics in the XXI century. It is emphasized that the work of the quantum computer is based on the results of basic research in the field of quantum physics. Today, the world is actively developing quantum technologies, which are expected to be implemented in the near future and provide breakthrough results in many areas of public life: from cryptography to modeling large-scale systems, description and prediction of complex processes and more. The contribution of Ukrainian scientists to the study of quantum systems, the development of quantum technologies and the solution of physical problems that arise in the implementation of elements of the quantum computer is considered.

References

Ono K., Shevchenko S.N., Mori T., Moriyama S., Nori F. Quantum interferometry with a g-factor-tunable spin qubit. Phys. Rev. Lett. 2019. 122: 207703. DOI: https://doi.org/10.1103/PhysRevLett.122.207703

Omelyanchuk A.N., Ilyichev E.V., Shevchenko S.N. Quantum coherent phenomena in Josephson qubits. Kyiv: Naukova Dumka, 2013 (in Russian). http://www.ilt.kharkov.ua/bvi/publisher/monographiya_2013.pdf

Izmalkov A., van der Ploeg S.H.W., Shevchenko S.N., Grajcar M., Il’ichev E., Hübner U., Omelyanchouk A.N., Meyer H.-G. Consistency of Ground State and Spectroscopic Measurements on Flux Qubits. Phys. Rev. Lett. 2008. 101: 017003. DOI: https://doi.org/10.1103/PhysRevLett.101.017003

Shevchenko S.N. Mesoscopic Physics meets Quantum Engineering. World Scientific, Singapore, 2019. DOI: https://doi.org/10.1142/11310

Arute F., Arya K., Babbush R. et al. Quantum supremacy using a programmable superconducting processor. Na-ture. 2019. 574: 505—510. DOI: https://doi.org/10.1038/s41586-019-1666-5

Zhong H.-S., Wang H., Deng Y.-H. et al. Quantum computational advantage using photons. Science. 2020. 370(6523): 1460—1463. DOI: https://doi.org/10.1126/science.abe8770

Castelvechhi D. Quantum projects get cash. Nature. 2018. 563: 14—15. DOI: https://doi.org/10.1038/d41586-018-07216-0

Shevchenko S.N., Ashhab S., Nori F. Landau-Zener-Stueckelberg interferometry. Physics Reports. 2010. 492(1): 1—30. DOI: https://doi.org/10.1016/j.physrep.2010.03.002

Grimes R.A. Cryptography apocalypse: preparing for the day when quantum computing breaks today's crypto. John Wiley & Sons, 2019.

Boaron A., Boso G., Rusca D., Vulliez C., Autebert C., Caloz M., Perrenoud M., Gras G., Bussières F., Li M.-J., Nolan D., Martin A., Zbinden H. Secure Quantum Key Distribution over 421 km of Optical Fiber. Phys. Rev. Lett. 2018. 121(19): 190502. DOI: https://doi.org/10.1103/PhysRevLett.121.190502

Dobrovolskiy O.V., Bevz V.M., Mikhailov M.Y., Yuzephovich O.I., Shklovskij V.A., Vovk R.V., Tsindlekht M.I., Sachser R., Huth M. Microwave emission from superconducting vortices in Mo/Si superlattices. Nat. Commun. 2018. 9: 4927. DOI: https://doi.org/10.1038/s41467-018-07256-0

Häußler M., Mikhailov M.Yu., Wolff M.A., Schuck C. Amorphous superconducting nanowire single-photon detectors integrated with nanophotonic waveguides. APL Photonics. 2020. 5(7): 076106. DOI: https://doi.org/10.1063/5.0004677

Korneeva Y.P., Mikhailov M.Yu., Pershin Yu.P., Manova N.N., Divochiy A.V., Vakhtomin Yu.B., Korneev A.A., Smirnov K.V., Sivakov A.G., Devizenko A.Yu., Goltsman G.N. Superconducting single-photon detector made of MoSi film. Supercond. Sci. Technol. 2014. 27(9): 095012. DOI: https://doi.org/10.1088/0953-2048/27/9/095012

Zhuravel A.P., Bae S., Lukashenko A.V., Averkin A.S., Ustinov A.V., Anlage S.M. Imaging collective behavior in an rf-SQUID metamaterial tuned by DC and RF magnetic fields. Appl. Phys. Lett. 2019. 114(8): 082601. DOI: https://aip.scitation.org/doi/10.1063/1.5064658

Wang H., Zhuravel A.P., Indrajeet S., Taketani B.G., Hutchings M.D., Hao Y., Rouxinol F., Wilhelm F.K., LaHaye M.D., Ustinov A.V., Plourde B.L.T. Mode structure in superconducting metamaterial transmission-line resonators. Phys. Rev. Appl. 2019. 11(5): 054062. DOI: https://doi.org/10.1103/PhysRevApplied.11.054062

Leha A.A., Zhuravel A.P., Karpov A., Lukashenko A.V., Ustinov A.V. Phase-resolved visualization of radio-frequency standing waves in superconducting spiral resonator for metamaterial applications. Fiz. Nizk. Temp. 2022. 48(2): 119—128. DOI: https://doi.org/10.1063/10.0009288

Published

2022-02-23

How to Cite

Shevchenko, S. N. (2022). Quantum computer: The state of the problem in the world and in Ukraine: Transcript of the report at the meeting of the Presidium of NAS of Ukraine, December 8, 2021. Visnik Nacional Noi Academii Nauk Ukrai Ni, (2), 35–43. https://doi.org/10.15407/visn2022.02.035