Double-acting anticancer drugs to overcome the acquired resistance of malignant cells to chemotherapy

According to the report at the meeting of the Presidium of the NAS of Ukraine, December 22, 2021

Authors

DOI:

https://doi.org/10.15407/visn2022.02.064

Keywords:

cancer drug resistance, reactive oxygen species, thiols, landomycins, apoptosis

Abstract

Molecular mechanisms underlying the unique ability of angucycline antibiotics of the landomycin family to overcome the acquired multi-drug resistance of tumor cells are studied. This phenomenon is shown to be based on the early induction of hydrogen peroxide in malignant cells without the involvement of mitochondria and the specific binding of these antibiotics to cellular thiols. It is demonstrated that early H2O2 generation by landomycins is mediated by NQO1 enzyme, and the use of its specific inhibitor (dicoumarol) significantly decreased both ROS production and cytotoxic activity of landomycins. Another mode of action of these anticancer antibiotics is tightly connected with their innate ability to bind to cellular thiols, thus leading to depletion of glutathione pool and subsequent induction of apoptosis. Cancer drug resistance is usually associated with increased cellular levels of glutathione, thus the increased affinity of landomycins for thiols may explain the selectivity of their action on drug-resistant tumor cells.

References

Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemo-therapy. Front. Pharmacol. 2013. 4: 68. https://doi.org/10.3389/fphar.2013.00068

Pirker R., Pereira J.R., Szczesna A. et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet. 2009. 373(9674): 1525—1531. https://doi.org/10.1016/S0140-6736(09)60569-9

Chaiswing L., St Clair W.H., St Clair D.K. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Anti-oxid. Redox Signal. 2018. 29(13): 1237—1272. https://doi.org/10.1089/ars.2017.7485

Farge T., Saland E., de Toni F. et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not En-riched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017. 7(7): 716—735. https://doi.org/10.1158/2159-8290.CD-16-0441

Hirpara J.L., Subramaniam K., Bellot G. et al. Superoxide induced inhibition of death receptor signaling is mediated via induced expression of apoptosis inhibitory protein cFLIP. Redox Biol. 2020. 30: 101403. https://doi.org/10.1016/j.redox.2019.101403

Ghigo A., Li M., Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Bio-phys. Acta. 2016. 1863(7B): 1916—1925. https://doi.org/10.1016/j.bbamcr.2016.01.021

Murabito A., Hirsch E., Ghigo A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front. Cardiovasc. Med. 2020. 7: 35. https://doi.org/10.3389/fcvm.2020.00035

Martins-Teixeira M.B., Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. Chem. Med. Chem. 2020. 15(11): 933—948. https://doi.org/10.1002/cmdc.202000131

Wang K., Jiang J., Lei Y., Zhou S., Wei Y., Huang C. Targeting Metabolic–Redox Circuits for Cancer Therapy. Trends Biochem. Sci. 2019. 44(5): 401—414. https://doi.org/10.1016/j.tibs.2019.01.001

Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Anti-oxidants (Basel). 2020. 9(4): 309. https://doi.org/10.3390/antiox9040309

Gamcsik M.P., Kasibhatla M.S., Teeter S.D., Colvin O.M. Glutathione levels in human tumors. Biomarkers. 2012. 17(8): 671—691. https://doi.org/10.3109/1354750X.2012.715672

Chiou T.J., Tzeng W.F. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology. 2000. 154(1-3): 75—84. https://doi.org/10.1016/S0300-483X(00)00321-8

Loor G., Kondapalli J., Schriewer J.M., Chandel N.S., Vanden Hoek T.L., Schumacker P.T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med. 2010. 49(12): 1925—1936. https://doi.org/10.1016/j.freeradbiomed.2010.09.021

Tetef M., Margolin K., Ahn C. et al. Mitomycin C and menadione for the treatment of advanced gastrointestinal cancers: a phase II trial. J. Cancer Res. Clin. Oncol. 1995. 121(2): 103—106. https://doi.org/10.1007/BF01202221

Korynevska A.., Heffeter P., Matselyukh B., Elbling L., Micksche M., Stoika R., Berger W. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharmacol. 2007. 74(12): 1713—1726. https://doi.org/10.1016/j.bcp.2007.08.026

Panchuk R. Signaling pathways involved in apoptosis induced by novel angucycline antibiotic landomycin E in Jurkat T-leukemia cells. Biopolym. Cell. 2011. 27(2): 124—131. http://dx.doi.org/10.7124/bc.00008B

Panchuk R.R., Lehka L.V., Matselyukh B.P., Kril’ I.Y., Stoika R.S. Search for and identification of molecular targets of angucycline antibiotic landomycin E in human tumor cells. Studia Biologica. 2012. 6(1): 5—19. http://dx.doi.org/10.30970/sbi.0601.194 .

Jiang F., Zhang Y., Dusting G.J. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev. 2011. 63(1): 218—242. https://doi.org/10.1124/pr.110.002980

Ross D., Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004. 382: 115—144. https://doi.org/10.1016/S0076-6879(04)82008-1

Iskander K., Jaiswal A.K. Quinone oxidoreductases in protection against myelogenous hyperplasia and benzene toxicity. Chem. Biol. Interact. 2005. 153-154: 147—157. https://doi.org/10.1016/j.cbi.2005.03.019

Pink J.J., Planchon S.M., Tagliarino C., Varnes M.E., Siegel D., Boothman D.A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J. Biol. Chem. 2000. 275(8): 5416—5424. https://doi.org/10.1074/jbc.275.8.5416

Terenzi A., La Franca M., van Schoonhoven S. et al. Landomycins as glutathione-depleting agents and natural fluo-rescent probes for cellular Michael adduct-dependent quinone metabolism. Commun. Chem. 2021. 4(1): 162. https://doi.org/10.1038/s42004-021-00600-4

Lehka L., Panchuk R., Berger W., Rohr J., Stoika R. The role of reactive oxygen species in tumor cells apoptosis in-duced by landomycin A. Ukr. Biochem. J. 2014. 87(5): 72—82. https://doi.org/10.15407/ubj87.05.072

Watanabe N., Forman H.J. Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. Arch. Biochem. Biophys. 2003. 411(1): 145—157. https://doi.org/10.1016/S0003-9861(02)00716-6

Gong X., Gutala R., Jaiswal A.K. Quinone oxidoreductases and vitamin K metabolism. Vitam. Horm. 2008. 78: 85—101. https://doi.org/10.1016/S0083-6729(07)00005-2

Panchuk R.R., Lehka L.V., Terenzi A. et al. Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic. Biol. Med. 2017. 106: 134—147. https://doi.org/10.1016/j.freeradbiomed.2017.02.024

Bienert G.P., Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta. 2014. 1840(5): 1596—1604. https://doi.org/10.1016/j.bbagen.2013.09.017

Lustgarten M.S., Bhattacharya A., Muller F.L., Jang Y.C., Shimizu T., Shirasawa T., Richardson A., Van Remme H. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem. Biophys. Res. Commun. 2012. 422(3): 515—521. https://doi.org/10.1016/j.bbrc.2012.05.055

Forman H.J., Zhang H., Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009. 30(1-2): 1—12. https://doi.org/10.1016/j.mam.2008.08.006

Dickinson D.A., Forman H.J. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002. 64(5-6): 1019—1026. https://doi.org/10.1016/S0006-2952(02)01172-3

Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer. 2002. 2(1): 48—58. https://doi.org/10.1038/nrc706

Griffith O.W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem. 1982. 257(22): 13704—13712.

Published

2022-02-23