The role of the microbiome in the development of oncological pathology
DOI:
https://doi.org/10.15407/visn2021.11.024Keywords:
microbiome, dysbiosis, immunity, carcinogenesis, oncological diseases, colorectal cancer, microbiota, metabolites, carcinogens, toxins, inflammation, immunotherapy, probioticsAbstract
The review is devoted to the analysis of modern ideas about the natural human microbiota (microbiome) as a key determinant responsible for maintaining health and for the development of a wide range of diseases, including cancer. In recent years, there has been much convincing evidence of the enormous action potential of the microbiome for the various processes of the human body. Based on these data, experts consider the microbiome as an additional human organ, which, by actively participating in digestion, control of metabolic processes, ensuring the integrity of the epithelial barrier, strengthening the immune system and performing a number of other physiological functions, optimizes conditions for normal human life.
References
Whisner C.M., Aktipis C.A. The Role of the Microbiome in Cancer Initiation and Progression: How Microbes and Cancer Cells Utilize Excess Energy and Promote One Another’s Growth. Curr. Nutr. Rep. 2019. 8(1): 42—51. DOI: https://doi.org/10.1007/s13668-019-0257-2
Siegel R.L., Miller K.D., Jemal A. Cancer Statistics. CA Cancer J. Clin. 2019. 69(1): 7—34. DOI: https://doi.org/10.3322/caac.21551
Sánchez-Alcoholado L., Ramos-Molina B., Otero A., Laborda-Illanes A., Ordóñez R., Medina J.A., Gómez-Millán J., Queipo-Ortuño M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel). 2020. 12(6): 1406. DOI: https://doi.org/10.3390/cancers12061406
Garrett W.S. The gut microbiota and colon cancer. Science. 2019. 364(6446): 1133—1135. DOI: https://doi.org/10.1126/science.aaw2367
Ohigashi S., Sudo K., Kobayashi D., Takahashi O., Takahashi T., Asahara T., Nomoto K., Onodera H. Changes of the intestinal microbiota, short chain fatty acids and fecal pH in patients with colorectal cancer. Digest. Dis. Sci. 2013. 58(6): 1717—1726. DOI: https://doi.org/10.1007/s10620-012-2526-4
Villéger R., Lopès A., Carrier G., Veziant J., Billard E., Barnich N., Gagnière J., Vazeille E., Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int. J. Mol. Sci. 2019. 20(18): 4584. DOI: https://doi.org/10.3390/ijms20184584
Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Jennifer A., Wargo J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018. 33(4): 570—580. DOI: https://doi.org/10.1016/j.ccell.2018.03.015
Spitzer M.H., Carmi Y., Reticker-Flynn N.E., Kwek S.S., Madhireddy D., Martins M.M., Gherardini P.F., Prestwood T.R., Chabon J., Bendall S.C., Fong L., Nolan G.P., Engleman E.G. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017. 168(3): 487—502. DOI: https://doi.org/10.1016/j.cell.2016.12.022
Cammarota G., Ianiro G., Cianci R., Bibbò S., Gasbarrini A., Currò D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy. Pharmacol. Ther. 2015. 149: 191—212. DOI: https://doi.org/10.1016/j.pharmthera.2014.12.006
Lederberg J., McCray A.T. 'Ome sweet 'omics — A genealogical treasury of words. Scientist. 2001. 15(7): 8.
Hutchinson L. Gut microbiota feeds obesity-induced liver cancer. Nat. Rev. Clin. Oncol. 2013. 10(8): 428. DOI: https://doi.org/10.1038/nrclinonc.2013.121
Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013. 499: 97—101. DOI: https://doi.org/10.1038/nature12347
Candela M., Turroni S., Biagi E., Carbonero F., Rampelli S., Fiorentini C., Brigidi P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol. 2014. 20: 908—922. DOI: https://doi.org/10.3748/wjg.v20.i4.908
Dejea C.M., Wick E.C., Hechenbleikner E.M., White J.R., Mark Welch J.L., Rossetti B.J., Peterson S.N., Snesrud E.C., Borisy G.G., Lazarev M., Stein E., Vadivelu J., Roslani A.C., Malik A.A., Wanyiri J.W., Goh K.L., Thevambiga I., Fu K., Wan F., Llosa N. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. 2014. 111(51): 18321—18326. DOI: https://doi.org/10.1073/pnas.1406199111
Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012. 336: 1268—1273. DOI: https://doi.org/10.1126/science.1223490
Li W., Deng Y., Chu Q., Zhang P. Gut microbiome and cancer immunotherapy. Cancer Lett. 2019. 447: 41—47. DOI: https://doi.org/10.1016/j.canlet.2019.01.015
Johansson M.E., Jakobsson H.E., Holmen-Larsson J., Schutte A., Ermund A., Rodriguez-Pineiro A.M., Arike L., Wising C., Svensson F., Bäckhed F., Hansson G.C. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015. 18: 582—592. DOI: https://doi.org/10.1016/j.chom.2015.10.007
Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 2014. 6: 237—265. DOI: https://doi.org/10.1126/scitranslmed.3008599
Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Microbiome. Kyiv: Veres O.I.., 2018).
Yankovskiy D.S., Dyment G.S. Microflora and human health. Кyiv: Chervona Ruta-Turs, 2008. (in Russian).
Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Integrated role of symbiotic microflora in human physiology. Kyiv: Chervona Ruta-Turs, 2011.( in Russian).
Yankovsky D.S., Shirobokov V.P., Dyment G.S. The role of microbiome in the formation of child health. Modern Pediatrics. Ukraine. 2019. 5(101): 64—111. DOI: https://doi.org/10.15574/SP.2019.101.64
Frosali S., Pagliari D., Gambassi G., Landolfi R., Pandolfi F., Cianci R. How the intricate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J. Immunol. Res. 2015: 489821. DOI: https://doi.org/10.1155/2015/489821
Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017. 17(4): 219—232. DOI: https://doi.org/10.1038/nri.2017.7
Liu Z.Y., Zheng M., Li Y.M., Fan X.Y., Wang J.C., Li Z.C., Hai-Jiao Yang H.J., Yu J.M., Cui J., Jiang J.L., Tang J., Chen Z.N. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics. 2019. 9(12): 3659—3673. DOI: https://doi.org/10.7150/thno.32126
Sansonetti P.J., Di Santo J.P. Debugging how bacteria manipulate the immune response. Immunity. 2007. 26: 149—161. DOI: https://doi.org/10.1016/j.immuni.2007.02.004
Bose M., Mukherjee P. Role of Microbiome in Modulating Immune Responses in Cancer. Mediators of Inflammation. 2019. Article ID 4107917. DOI: https://doi.org/10.1155/2019/4107917
Fong, W., Li, Q., Yu, J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020. 39: 4925—4943. DOI: https://doi.org/10.1038/s41388-020-1341-1
Swidsinski A., Khilkin M., Kerjaschki D., Schreiber S., Ortner M., Weber J., Lochs H. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998. 115(2): 281—286. DOI: https://doi.org/10.1016/S0016-5085(98)70194-5
Gueimonde M., Ouwehand A., Huhtinen H., Salminen E., Salminen S. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World. J. Gastroenterol. 2007. 13(29): 3985—3989. DOI: https://doi.org/10.3748/wjg.v13.i29.3985
Shen X.J., Rawls J.F., Randall T., Burcal L., Mpande C.N., Jenkins N., Jovov B., Abdo Z., Sandler R.S., Keku T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010. 1(3): 138—147. DOI: https://doi.org/10.4161/gmic.1.3.12360
Wang T., Cai G., Qiu Y., Fei Na, Zhang M., Pang X., Jia W., Cai S., Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012. 6: 320—329. DOI: https://doi.org/10.1038/ismej.2011.109
Song M., Chan A.T., Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology. 2020. 158(2): 322—340. DOI: https://doi.org/10.1053/j.gastro.2019.06.048
Cimadamore A., Santoni M., Massari F., Gasparrini S., Cheng L., Lopez-Beltran A., Montironi R., Scarpelli M. Microbiome and Cancers, With Focus on Genitourinary Tumors. Front. Oncol. 2019. 9: 178. DOI: https://doi.org/10.3389/fonc.2019.00178
Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013. 105(24): 1907—1911. DOI: https://doi.org/10.1093/jnci/djt300
Abreu M.T., Peek R.M. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014. 146(6): 1534—4156. DOI: https://doi.org/10.1053/j.gastro.2014.01.001
Zitvogel L., Daillère R., Roberti M.P., Routy B., Kroemer G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017. 15: 465—478. DOI: https://doi.org/10.1038/nrmicro.2017.44
Toor D., Wasson M.K., Kumar P., Karthikeyan G., Kaushik N.K., Goel C., Singh S., Kumar A., Prakash H. Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. Int. J. Mol. Sci. 2019. 20(10): 2432. DOI: https://doi.org/10.3390/ijms20102432
Songisepp E., Kals J., Kullisaar T., Mändar R., Hütt P., Zilmer M., Mikelsaar M. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr. J. 2005. 4(4): 22. DOI: https://doi.org/10.1186/1475-2891-4-22
Cuevas-Ramos G., Petit C.R., Marcq I., Boury M., Oswald E., Nougayrède J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Nat. Acad. Sci. USA. 2010. 107(25): 11537—11542. DOI: https://doi.org/10.1073/pnas.1001261107
Nelson R. Bacterial Biofilms May Play Role in Colorectal Cancer. Medscape Medical News. 2014. http://www.medscape.com/viewarticle/837145
Lu R., Wu S., Zhang Y-G., Xia Y., Liu X., Zheng Y., Chen H., Schaefer K.L., Zhou Z., Bissonnette M., Li L., Sun J. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis. 2014. 3(6): e105. DOI: https://doi.org/10.1038/oncsis.2014.20
Wistuba I.I., Gazdar A.F. Gallbladder cancer: lessons from a rare tumour. Nat. Rev. Cancer. 2004. 4(9): 695—706. DOI: https://doi.org/10.1038/nrc1429
Gillet E., Meys J.F., Verstraelen H., Verhelst R., De Sutter P., Temmerman M., Vanden Broeck D. Association between bacterial vaginosis and cervical intraepithelium neoplasia: systematic review and meta-analysis. PLoS One. 2012. 7(10): e45201. DOI: https://doi.org/10.1371/journal.pone.0045201
Wang Y.C., Yu R.C., Chou C.C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006. 23(2): 128—35. DOI: https://doi.org/10.1016/j.fm.2005.01.020
Scott A.J., Merrifield C.A., Younes J.A., Pekelharing E.P. Pre-, pro-, and synbiotics in cancer prevention and treatment — A review of basic and clinical research. Ecancermedicalscience. 2018. 12. DOI: https://doi.org/10.3332/ecancer.2018.869
Bashiardes S., Tuganbaev T., Federici S., Elinav E. The microbiome in anti-cancer therapy. Semin. Immunol. 2017. 32: 74—81. DOI: https://doi.org/10.1016/j.smim.2017.04.001
Iida N., Dzutsev A., Stewart C.A., Smith L., Bouladoux N., Weingarten R.A., Molina D.A., Salcedo R., Back T., Cramer S. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science. 2013. 342: 967—970. DOI: https://doi.org/10.1126/science.1240527
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillere R., Hannani D., Enot D.P., Pfirschke C., Engblom C., Pittet M.J. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science. 2013. 342: 971—976. DOI: https://doi.org/10.1126/science.1240537
Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018. 359: 97—103. DOI: https://doi.org/10.1126/science.aan4236
Collins D., Hogan A.M., Winter D.C. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011. 12: 504—512. DOI: https://doi.org/10.1016/S1470-2045(10)70186-8
Uronis J.M., Muhlbauer M., Herfarth H.H., Rubinas T.C., Jones G.S., Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009. 4: e6026. DOI: https://doi.org/10.1371/journal.pone.0006026
Kado S., Uchida K., Funabashi H., Iwata S., Nagata Y., Ando M., Onoue M., Matsuoka Y., Ohwaki M., Morotomi M. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 2001. 61(6): 2395—2398. https://cancerres.aacrjournals.org/content/61/6/2395
Marchesi J.R., Dutilh B.E., Hall N., Peters W.H.M., Roelofs R., Boleij A., Tjalsma H. Towards the human colorectal cancer microbiome. PLoS One. 2011. 6: e20447. DOI: https://doi.org/10.1371/journal.pone.0020447
Coker O.O., Nakatsu G., Dai R.Z., Wu W.K.K., Wong S.H., Ng S.C., Chan F.K.L., Sung J.J.Y., Yu J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019. 68(4): 654—662. DOI: https://doi.org/10.1136/gutjnl-2018-317178
Moore W.E., Moore L.H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 1995. 61(9): 3202—3207.
Vannucci L., Stepankova R., Kozakova H., Fiserova A., Rossmann P., Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol. 2008. 32(3): 609–617. DOI: https://doi.org/10.3892/ijo.32.3.609
Wu S., Albesiano E., Rabizadeh S., Wu X., Yen H.R., Huso D.L., Brancati F.L., Wick E., McAllister F., Housseau F., Pardoll D.M., Sears C.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009. 15: 1016—1022. DOI: https://doi.org/10.1038/nm.2015
Toprak N.U., Yagci A., Gulluoglu B.M. Akin M.L., Demirkalem P., Celenk T., Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 2006. 12(8): 782—786. DOI: https://doi.org/10.1111/j.1469-0691.2006.01494.x
Balamurugan R., Rajendiran E., George S., Samuel G.V., Ramakrishna B.S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol. 2008. 23(8): 1298—1303. DOI: https://doi.org/10.1111/j.1440-1746.2008.05490.x
Yang J., McDowell A., Kim E.K., Seo H., Lee W.H., Moon C.M., Kym S.M., Lee D.H., Park Y.S., Jee Y.K., Kim Y.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med. 2019. 51(10): 117. DOI: https://doi.org/10.1038/s12276-019-0313-4
Boleij A., Roelofs R., Schaeps R.M., Schülin T., Glaser P., Swinkels D.W., Kato I., Tjalsma H. Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer. 2010. 116(17): 4014—4022. DOI: https://doi.org/10.1002/cncr.25212
Arthur J.C.., Gharaibeh R.Z., Mühlbauer M., Perez-Chanona E., Uronis J.M., McCafferty J., Fodor A.A., Jobin C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014. 5: 4724. DOI: https://doi.org/10.1038/ncomms5724
Fichtner-Feigl S., Kesselring R., Strober W. Chronic inflammation and the development of malignancy in the GI tract. Trends Immunol. 2015. 36(8): 451—459. DOI: https://doi.org/10.1016/j.it.2015.06.007
Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012. 13: 607—615. DOI: https://doi.org/10.1016/S1470-2045(12)70137-7
Vivarelli S., Salemi R., Candido S., Falzone L., Santagati M., Stefani S., Torino F., Banna G., Tonini G., Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel). 2019. 11(1): 38. DOI: https://doi.org/10.3390/cancers11010038
Boleij A., Hechenbleikner E.M., Goodwin A.C., Badani R., Stein E.M., Lazarev M.G., Ellis B., Carroll K.C., Albesiano E., Wick E.C., Platz E.A., Pardoll D.M., Sears C.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 2015. 60(2): 208—215. DOI: https://doi.org/10.1093/cid/ciu787
Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2017. 93: 196—219. DOI: https://doi.org/10.2183/pjab.93.013
Moss S.F. The Clinical Evidence Linking Helicobacter pylori to Gastric Cancer. Cell. Mol. Gastroenterol. Hepatol. 2017. 3: 183—191. DOI: https://doi.org/10.1016/j.jcmgh.2016.12.001
Kim J.J., Tao H., Carloni E., Leung W.K., Graham D.Y., Sepulveda A.R. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology. 2002. 123: 542—553. DOI: https://doi.org/10.1053/gast.2002.34751
Toller I.M., Neelsen K.J., Steger M., Hartung M.L., Hottiger M.O., Stucki M., Kalali B., Gerhard M., Sartori A.A., Lopes M. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl. Acad. Sci. USA. 2011. 108: 14944—14949. DOI: https://doi.org/10.1073/pnas.1100959108
Grasso F., Frisan T. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules. 2015. 5: 1762—1782. DOI: https://doi.org/10.3390/biom5031762
Gur C., Ibrahim Y., Isaacson B., Yamin R., Abed J., Gamliel M., Enk J., Bar-On Y., Stanietsky-Kaynan N., Coppenhagen-Glazer S. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015 42: 344—355. DOI: https://doi.org/10.1016/j.immuni.2015.01.010
Fernández M.F., Reina-Pérez I., Astorga J.M., Rodríguez-Carrillo A., Plaza-Díaz J., Fontana L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public. Health. 2018. 15: 1747. DOI: https://doi.org/10.3390/ijerph15081747
Ma W., Mao Q., Xia W., Dong G., Yu C., Jiang F. Gut Microbiota Shapes the Efficiency of Cancer Therapy. Front. Microbiol. 2019. DOI: https://doi.org/10.3389/fmicb.2019.01050
Sears C.L., Garrett W.S. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014. 15: 317—328. DOI: https://doi.org/10.1016/j.chom.2014.02.007
Brennan C.A., Garrett W.S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 2016. 70: 395—411. DOI: https://doi.org/10.1146/annurev-micro-102215-095513
Hold G.L. Gastrointestinal microbiota and colon cancer. Dig. Dis. 2016. 34(3): 244—250. DOI: https://doi.org/10.1159/000443358
Wei W., Sun W., Yu S., Yang Y., Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk. Lymphoma. 2016. 57: 2401—2408. DOI: https://doi.org/10.3109/10428194.2016.1144879
So S.S., Wan M.L., El-Nezami H. Probiotics-mediated suppression of cancer. Current opinion in oncology. 2017. 29(1): 62—72. DOI: https://doi.org/10.1097/CCO.0000000000000342
Smits H.H., Engering A., ven der Kleij D., de Jong E.C., Schipper K., van Capel T.M., Zaat B.A., Yazdanbakhsh M., Wierenga E.A., van Kooyk Y. Selective probiotic bacteria induce IL-10-producing regulatory T-cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 2005. 115(6): 1260—1267. DOI: https://doi.org/10.1016/j.jaci.2005.03.036
Orlando A., Linsalata M., Russo F. Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus GG. Int. J. Oncol. 2016. 48(6): 2629—2638. DOI: https://doi.org/10.3892/ijo.2016.3463
Nouri Z., Karami F., Neyazi N., Modarressi M.H., Karimi R., Khorramizadeh M.R., Taheri B., Motevaseli E. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines. Cell J. 2016. 18(2): 127—134. DOI: https://doi.org/10.22074/cellj.2016.4307
Hamilton-Miller J.M.T. Probiotics and prebiotics in the elderly. Postgrad. Med. 2004. 80(946): 447—451. DOI: https://doi.org/10.1136/pgmj.2003.015339
Alexander J.L., Wilson I.D., Teare J., Marchesi J.R., Nicholson J.K., Kinross J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017. 14: 356—365. DOI: https://doi.org/10.1038/nrgastro.2017.20
Sokol H., Adolph T.E. The microbiota: An underestimated actor in radiation-induced lesions? Gut. 2018. 67: 1—2. DOI: https://doi.org/10.1136/gutjnl-2017-314279
Eslami M., Yousefi B., Kokhaei P., Hemati M., Nejad Z.R., Arabkari V., Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J. Cell. Physiol. 2019. 234(10): 17127—17143. DOI: https://doi.org/10.1002/jcp.28473
Hedin C.R.H., Mullard M., Sharratt E., Jansen C., Sanderson J.D., Shirlaw P., Howe L.C., Djemal S., Stagg A.J., Lindsay J.O., Whelan K. Probiotic and prebiotic use in patients with inflammatory bowel disease: a case-control study. Inflamm. Bowel Dis. 2010. 16: 2099—2108. DOI: https://doi.org/10.1002/ibd.21286
Hemarajata P., Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 2013. 6: 39—51. DOI: https://doi.org/10.1177/1756283X12459294
Caballero-Franco C., Keller K., De Simone C., Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastroint. Liver Physiol. 2007. 292: 315—322. DOI: https://doi.org/10.1152/ajpgi.00265.2006
Resta-Lenert S., Barrett K.E. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006. 130: 731—746. DOI: https://doi.org/10.1053/j.gastro.2005.12.015
Van Tassell M.L., Miller M.J. Lactobacillus Adhesion to Mucus. Nutrients. 2011. 3(5): 613—636. DOI: https://doi.org/10.3390/nu3050613
Martin F.P., Wang Y., Sprenger N., Yap K.S., Rezzi S., Ramadan Z, Peré-Trepat E., Rochat F., Cherbut C., van Bladeren P.J., Fay L.B., Kochhar S., Lindon J.C., Holmes E., Nicholson J.K. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 2008. 4(1): 157. DOI: https://doi.org/10.1038/msb4100190
Macia L., Thorburn A.N., Binge L.C., Marino E., Rogers K.E, Maslowski K.M., Vieira A.T., Kranich J., Mackay C.R. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. 2012. 245: 164—176. DOI: https://doi.org/10.1111/j.1600-065X.2011.01080.x
Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016. 22(7): 2219—2241. DOI: https://doi.org/10.3748/wjg.v22.i7.2219
Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., Xavier R.J., Teixeira M.M., Mackay C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009. 461: 1282—1286. DOI: https://doi.org/10.1038/nature08530
Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009. 139: 1619—1625. DOI: https://doi.org/10.3945/jn.109.104638
Videlock E.J., Cremonini F. Meta-analysis: Probiotics in Antibiotic-Associated Diarrhoea. Alimentary Pharmacology & Therapeutics. 2012. 35(12): 1355—1369. DOI: https://doi.org/10.1111/j.1365-2036.2012.05104.x
Yankovsky D.S., Shirobokov V.P., Dyment G.S. Microbiome and human aging. Journal of the National Academy of Medical Sciences of Ukraine. 2019. 25(4): 245—252. DOI: https://doi.org/10.37621/JNAMSU-2019-4-463-475
Yang Y.J., Chuang C.C., Yang H.B., Lu C.C., Sheu B.S. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkappaB pathways. BMC Microbiol. 2012. 12: 38. DOI: https://doi.org/10.1186/1471-2180-12-38
Ghadimi D., Vrese M., Heller K.J., Schrezenmeir J. Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integrity of polarized intestinal epithelial cells. Inflamm. Bowel Dis. 2010. 16: 410—427. DOI: https://doi.org/10.1002/ibd.21057
Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019. 74(2): 115—124. DOI: https://doi.org/10.1159/000496426
Matsumoto M., Kibe R., Ooga T., Aiba Y., Sawaki E., Koga Y., Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front. Syst. Neurosci. 2013. 7: 9. DOI: https://doi.org/10.3389/fnsys.2013.00009
Rimoldi M., Chieppa M., Larghi P., Vulcano M., Allavena P., Rescigno M. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood. 2005. 106: 2818—2826. DOI: https://doi.org/10.1182/blood-2004-11-4321
Lopez P., Gueimonde M., Margolles A., Suarez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int. J. Food Microbiol. 2010. 138: 157—165. DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.12.023
Riaz Rajoka M.S., Shi J., Zhu J., Shao D., Huang Q., Yang H. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl. Microbiol. Biotechnol. 2017. 101(1): 35—45. DOI: https://doi.org/10.1007/s00253-016-8005-7
Roselli M., Finamore A., Nuccitelli S., Carnevali P., Brigidi P., Vitali B., Nobili F., Rami R., Garaguso I., Mengheri E. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with as expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm. Bowel Dis. 2009. 15(10): 1526—1536. DOI: https://doi.org/10.1002/ibd.20961
Shyrobokov V.P., Yankovskiy D.S., Dyment G.S. New strategies in the field of developing and clinical application of probiotics. Journal of Pharmacology and Pharmacy. 2010. 2: 18—30. (in Russsian).
Cunningham-Rundles S., Ahrné S., Johann-Liang R., Abuav R., Dunn-Navarra A.M., Grassey C., Bengmark S., Cervia J.S. Effect of probiotic bacteria on microbial host defense, growth, and immune function in human immunodeficiency virus type-1 infection. Nutrients. 2011. 3: 1042—1070. DOI: https://doi.org/10.3390/nu3121042
Di Giacinto C., Marinaro M., Sanchez M., Strober W., Boirivant M. Probiotics meliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 2005. 174(6): 3237—3246. DOI: https://doi.org/10.4049/jimmunol.174.6.3237
Hardy H., Harris J., Lyon E., Beal J., Foey A.D. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients. 2013. 5: 1869—1912. DOI: https://doi.org/10.3390/nu5061869
Kleerebezem M., Vaughan E.E. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Ann. Rev. Microbiol. 2009. 63: 269—290. DOI: https://doi.org/10.1146/annurev.micro.091208.073341
Matsumoto S., Hara T., Nagaoka M., Mike A., Mitsuyama K., Sako T., Yamamoto M., Kado S., Takada T. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 2009. 128(1): 170—180. DOI: https://doi.org/10.1111/j.1365-2567.2008.02942.x
Quan Toh Z.A., Anzela A., Tang M.L.K., Licciardi P.V. Probiotic therapy as a novel approach for allergic disease. Front. Pharmacol. 2012. 6: 533—548. DOI: https://doi.org/10.3389/fphar.2012.00171
Steed H., Macfarlane G.T., Macfarlane S. Prebiotics, synbiotics and inflammatory bowel disease. Mol. Nutr. Food Res. 2008. 52(8): 898—905. DOI: https://doi.org/10.1002/mnfr.200700139
De Wolfe T.J., Eggers S., Barker A.K., Kates A.E., Dill-McFarland K.A., Suen G., Safdar N. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS One. 2018. 13: e0204253. DOI: https://doi.org/10.1371/journal.pone.0204253
Thomas C., Versalovic J. Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes. 2010. 1(3): 148—163. DOI: https://doi.org/10.4161/gmic.1.3.11712
Preidis G.A., Versalovic J. Targeting the human microbiome with antibiotic, probiotics, and prebiotics: gastroenterology enters the metagenomic era. Gastroenterology. 2009. 136(6): 2015—2031. DOI: https://doi.org/10.1053/j.gastro.2009.01.072
Yu L.X., Schwabe R.F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 2017. 14: 527—539. DOI: https://doi.org/10.1038/nrgastro.2017.72
Sivan A., Corrales L., Hubert N., Williams J.B., Aquino Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.L., Chang E.B., Gajewski T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PDL1 efficacy. Science. 2015. 350: 1084—1089. DOI: https://doi.org/10.1126/science.aac4255
Taverniti V., Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011. 6(3): 261—274. DOI: https://doi.org/10.1007/s12263-011-0218-x
Hart A.L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M.A., Knight S.C., Stagg A.J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004. 53: 1602—1609. DOI: https://doi.org/10.1136/gut.2003.037325
Tanoue T., Morita S., Plichta D.R., Skelly A.N., Suda W., Sugiura Y., Narushima S., Vlamakis H., Motoo I., Sugita K. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019. 565: 600—605. DOI: https://doi.org/10.1038/s41586-019-0878-z
Frankel A.E., Deshmukh S., Reddy A., Lightcap J., Hayes M., McClellan S., Singh S., Rabideau B., Glover T.G., Roberts B. Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integr. Cancer Ther. 2019. 18. DOI: https://doi.org/10.1177/1534735419846379
Shyrobokov V.P., Yankovskyy D.S., Dyment G.S. Microbes in biogeochemical processes, evolution of biosphere and human life. Kyiv: Veres O.I., 2014. (in Russian).
Borchers A.T., Selmi C., Meyers F.J., Keen C.L., Gershwin M.E. Probiotics and immunity. J. Gastroenterol. 2009. 44: 26—46. DOI: https://doi.org/10.1007/s00535-008-2296-0