Механізми адаптації клітин до гіпоксії, або як «перекрити кисень» злоякісній пухлині

Нобелівська премія з фізіології та медицини 2019 року

Автор(и)

  • Сергій Васильович Комісаренко академік НАН України, директор Інституту біохімії ім. О.В. Палладіна НАН України
  • Світлана Іванівна Романюк кандидат біологічних наук, старший науковий співробітник Інституту біохімії ім. О.В. Палладіна НАН України

DOI:

https://doi.org/10.15407/visn2019.12.003

Анотація

Нобелівську премію з фізіології та медицини у 2019 р. присуджено двом американським ученим — Вільяму Дж. Келіну-молодшому (William G. Kaelin, Jr.) з Гарвардського університету та Грегу Л. Семензі (Gregg L. Semenza) з Університету Джонса Хопкінса, а також британському досліднику Пітеру Дж. Реткліффу (Sir Peter J. Ratcliffe) з Оксфордського університету за «відкриття того, як клітини відчувають і пристосовуються до наявності кисню». Роботи цьогорічних нобелівських лауреатів заклали основу для розуміння того, як рівень кисню впливає на клітинний метаболізм та фізіологічні функції. Їх дослідження відкривають шлях до розроблення нових стратегій у боротьбі з анемією, раком та багатьма іншими хворобами.

Посилання

Citation Laureates 2019.

https://clarivate.com/webofsciencegroup/wp-content/uploads/sites/2/dlm_uploads/2019/09/Citation_Laureates_2019.pdf

The Nobel Prize in Physiology or Medicine 2019. Press release. https://www.nobelprize.org/prizes/medicine/2019/press-release/

William Kaelin Jr. Wikipedia. https://en.wikipedia.org/wiki/William_Kaelin_Jr.

Carolyn Kaelin. Wikipedia. https://en.wikipedia.org/wiki/Carolyn_Kaelin

Peter J. Ratcliffe. Wikipedia. https://en.wikipedia.org/wiki/Peter_J._Ratcliffe

Gregg L. Semenza. Wikipedia. https://en.wikipedia.org/wiki/Gregg_L._Semenza

Johnson R.S. Scientific Background. How cells sense and adapt to oxygen availability. https://www.nobelprize.org/prizes/medicine/2019/advanced-information/

Belitser V.A., Tsybakova E.T. On the mechanism of phosphorylation associated with respiration. Biochemistry. 1939. 4(5): 516.

Miyake T., Kung C.K., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977. 252(15): 5558.

Bondurant M.C., Koury M.J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Biol. 1986. 6(7): 2731. DOI: https://doi.org/10.1128/MCB.6.7.2731

Semenza G.L., Nejfelt M.K., Chi S.M., Antonarakis S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA. 1991. 88(13): 5680. DOI: https://doi.org/10.1073/pnas.88.13.5680

Beck I., Ramirez S., Weinmann R., Caro J. Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 1991. 266(24): 15563.

Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992. 12(12): 5447. DOI: https://doi.org/10.1128/mcb.12.12.5447

Maxwell P.H., Pugh C.W., Ratcliffe P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA. 1993. 90(6): 2423. DOI: https://doi.org/10.1073/pnas.90.6.2423

Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA. 1993. 90(9): 4304. DOI: https://doi.org/10.1073/pnas.90.9.4304

Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995. 270(3): 1230. DOI: https://doi.org/ 10.1074/jbc.270.3.1230

Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995. 92(12): 5510. DOI: https://doi.org/10.1073/pnas.92.12.5510

Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA. 1997. 94(9): 4273. DOI: https://doi.org/10.1073/pnas.94.9.4273

Flamme I., Frohlich T., von Reutern M., Kappel A., Damert A., Risau W. HRF, a putative basic helixloop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech. Dev. 1997. 63(1): 51. DOI: https://doi.org/10.1016/s0925-4773(97)00674-6

Hogenesch J.B., Chan W.K., Jackiw V.H., Brown R.C., Gu Y.Z., Pray-Grant M., Perdew G.H., Bradfield C.A. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 1997. 272(13): 8581. DOI: https://doi.org/10.1016/s0925-4773(97)00674-6

Tian H., McKnight S.L., Russell D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997. 11(1): 72. DOI: https://doi.org/10.1101/gad.11.1.72

Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. 286(6), R977. DOI: https://doi.org/10.1152/ajpregu.00577.2003

Pugh C.W., O'Rourke J.F., Nagao M., Gleadle J.M., Ratcliffe P.J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J. Biol. Chem. 1997. 272(17): 11205. DOI: https://doi.org/10.1074/jbc.272.17.11205

Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997. 272(36): 22642. DOI: https://doi.org/10.1074/jbc.272.36.22642

Huang L.E., Gu J., Schau M., Bunn H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA. 1998. 95(14): 7987. DOI: https://doi.org/10.1073/pnas.95.14.7987

Iliopoulos O., Kibel A., Gray S., Kaelin W.G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1995. 1(8): 822. DOI: https://doi.org/10.1038/nm0895-822

Iliopoulos O., Levy A.P., Jiang C., Kaelin W.G. Jr., Goldberg M.A. Negative regulation of hypoxia inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA. 1996. 93(20): 10595. DOI: https://doi.org/10.1073/pnas.93.20.10595

Duan D.R., Pause A., Burgess W.H., Aso T., Chen D.Y., Garrett K.P., Conaway R.C., Conaway J.W., Linehan W.M., Klausner R.D. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995. 269(5229): 1402. DOI: https://doi.org/10.1126/science.7660122

Kibel A., Iliopoulos O., DeCaprio J.A., Kaelin W.G. Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995. 269(5229): 1444. DOI: https://doi.org/10.1126/science.7660130

Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M., Klausner R.D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA. 1997. 94(6): 2156. DOI: https://doi.org/10.1073/pnas.94.6.2156

Lonergan K.M., Iliopoulos O., Ohh M., Kamura T., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 1998. 18(2): 732. DOI: https://doi.org/10.1128/mcb.18.2.732

Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999. 399(6733): 271. DOI: https://doi.org/10.1038/20459

Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., Kaelin W.G. Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001. 292(5516): 464. DOI: https://doi.org/10.1126/science.1059817

Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001. 292(5516): 468. DOI: https://doi.org/10.1126/science.1059796

Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001. 294(5545): 1337. DOI: https://doi.org/10.1126/science.1066373

Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O'Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P.H., Pugh C.W., Schofield C.J., Ratcliffe P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001. 107(1): 43. DOI: https://doi.org/10.1016/s0092-8674(01)00507-4

Ivan M., Haberberger T., Gervasi D.C., Michelson K.S., Gunzler V., Kondo K., Yang H., Sorokina I., Conaway R.C., Conaway J.W., Kaelin W.G. Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA. 2002. 99(21): 13459. DOI: https://doi.org/10.1073/pnas.192342099

Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001. 15(20): 2675. DOI: https://doi.org/10.1101/gad.924501

Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002. 295(5556): 858. DOI: https://doi.org/10.1126/science.1068592

Ruas J.L., Berchner-Pfannschmidt U., Malik S., Gradin K., Fandrey J., Roeder R.G., Pereira T., Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J. Biol. Chem. 2010. 285(4): 2601. DOI: https://doi.org/10.1074/jbc.M109.021824

Li Z., Wang D., Na X., Schoen S.R., Messing E.M., Wu G. The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J. 2003. 22(8):1857. DOI: https://doi.org/10.1093/emboj/cdg173

Schödel J., Oikonomopoulos S., Ragoussis J., Pugh C.W., Ratcliffe P.J., Mole D.R. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011. 117(23): e207. DOI: https://doi.org/10.1182/blood-2010-10-314427

Chavez J.C., Baranova O., Lin J., Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J. Neurosci. 2006. 26(37): 9471. DOI: https://doi.org/10.1523/JNEUROSCI.2838-06.2006

Dhillon S. Roxadustat: First Global Approval. Drugs. 2019. 79(5): 563. DOI: https://doi.org/10.1007/s40265-019-01077-1

Frost J., Galdeano C., Soares P., Gadd M.S., Grzes K.M., Ellis L., Epemolu O., Shimamura S., Bantscheff M., Grandi P., Read K.D., Cantrell D.A., Rocha S., Ciulli A. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat. Commun. 2016. 7: 13312. DOI: https://doi.org/10.1038/ncomms13312

Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., Dang C.V., Liu J.O., Semenza G.L. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008. 105(50): 19579. DOI: https://doi.org/10.1073/pnas.0809763105

Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc. Natl. Acad. Sci. USA. 2009. 106(9): E26. DOI: https://doi.org/10.1073/pnas.0813047106

Marshall D.J., Harried S.S., Murphy J.L., Hall C.A., Shekhani M.S., Pain C., Lyons C.A., Chillemi A., Malavasi F., Pearce H.L., Thorson J.S., Prudent J.R. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol. Ther. 2016. 24(10): 1760. DOI: https://doi.org/10.1038/mt.2016.119

Scheepstra M., Hekking K.F.W., van Hijfte L., Folmer R.H.A. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput. Struct. Biotechnol. J. 2019. 17: 160. DOI: https://doi.org/10.1016/j.csbj.2019.01.006

Neklesa T., Snyder L.B., Willard R.R., Vitale N., Pizzano J., Gordon D.A., Bookbinder M., Macaluso J., Dong H., Ferraro C., Wang G., Wang J., Crews C.M., Houston J., Crew A.P., Taylor I. ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal of Clinical Oncology. 2019. 37(7): 259. DOI: https://doi.org/10.1200/JCO.2019.37.7_suppl.259

Maniaci C., Hughes S.J., Testa A., Chen W., Lamont D.J., Rocha S., Alessi D.R., Romeo R., Ciulli A. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 2017. 8(1): 830. DOI: https://doi.org/10.1038/s41467-017-00954-1

Zengerle M., Chan K.-H., Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015. 10(8): 1770. DOI: https://doi.org/10.1021/acschembio.5b00216

da Motta L.L., Ledaki I., Purshouse K., Haider S., De Bastiani M.A., Baban D., Morotti M., Steers G., Wigfield S., Bridges E., Li J.L., Knapp S., Ebner D., Klamt F., Harris A.L., McIntyre A. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017. 36(1): 122. DOI: https://doi.org/10.1038/onc.2016.184

Pettersson M., Crews C.M. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. Drug Discov. Today Technol. 2019. 31: 15. DOI: https://doi.org/10.1016/j.ddtec.2019.01.002

Bayer, Arvinas Partner on PROTAC Joint Venture, Treatments for Cancer, CV, Gynecological Diseases. https://www.genengnews.com/news/bayer-arvinas-partner-on-protac-therapies-for-cancer-cv-gynecological-diseases/

Dawson M.A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017. 355(6330): 1147. DOI: https://doi.org/10.1126/science.aam7304

Choudhry H., Harris A.L., McIntyre A. The tumour hypoxia induced non-coding transcriptome. Mol. Aspects Med. 2016. 47-48: 35. DOI: https://doi.org/10.1016/j.mam.2016.01.003

Choudhry H., Harris A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018. 27(2): 281. DOI: https://doi.org/10.1016/j.cmet.2017.10.005

Zhao H., Yang L., Baddour J., Achreja A., Bernard V., Moss T., Marini J.C., Tudawe T., Seviour E.G., San Lucas F.A., Alvarez H., Gupta S., Maiti S.N., Cooper L., Peehl D., Ram P.T., Maitra A., Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016. 5: e10250. DOI: https://doi.org/10.7554/eLife.10250

Rong L., Li R., Li S., Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol. Lett. 2016. 11(1): 500. DOI: https://doi.org/10.3892/ol.2015.3841

Berchem G., Noman M.Z., Bosseler M., Paggetti J., Baconnais S., Le Cam E., Nanbakhsh A., Moussay E., Mami-Chouaib F., Janji B., Chouaib S. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. OncoImmunology. 2015. 5(4): e1062968. DOI: https://doi.org/10.1080/2162402X.2015.1062968

Fu L., Kettner N.M. The circadian clock in cancer development and therapy. Prog. Mol. Biol. Transl. Sci. 2013. 119: 221. DOI: https://doi.org/10.1016/B978-0-12-396971-2.00009-9

Chilov D., Hofer T., Bauer C., Wenger R.H., Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001. 15(14): 2613. DOI: https://doi.org/10.1096/fj.01-0092com

Ghorbel M.T., Coulson J.M., Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol. Cell. Neurosci. 2003. 22(3): 396. DOI: https://doi.org/10.1016/s1044-7431(02)00019-2

Yu C., Yang S.L., Fang X., Jiang J.X., Sun C.Y., Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol. Med. Rep. 2015. 11(5): 4002. DOI: https://doi.org/10.3892/mmr.2015.3199

Koyanagi S., Kuramoto Y., Nakagawa H., Aramaki H., Ohdo S., Soeda S., Shimeno H. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003. 63(21): 7277.

Wu Y., Tang D., Liu N., Xiong W., Huang H., Li Y., Ma Z., Zhao H., Chen P., Qi X., Zhang E.E. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017. 25(1): 73. DOI: https://doi.org/10.1016/j.cmet.2016.09.009

Merck to Acquire Peloton Therapeutics, Bolstering Oncology Pipeline. https://www.businesswire.com/news/home/20190521005432/en/Merck-Acquire-Peloton-Therapeutics-Bolstering-Oncology-Pipeline

##submission.downloads##

Опубліковано

2019-12-18

Як цитувати

Комісаренко, С. В., & Романюк, С. І. (2019). Механізми адаптації клітин до гіпоксії, або як «перекрити кисень» злоякісній пухлині: Нобелівська премія з фізіології та медицини 2019 року. Вісник Національної академії наук України, (12), 3–19. https://doi.org/10.15407/visn2019.12.003