Нанокарбон: фармакологічні та токсикологічні властивості
DOI:
https://doi.org/10.15407/visn2015.07.041Ключові слова:
нанокарбон, графен, фулерени, карбонові нанотрубки, нанокомпозити карбону з металами, токсичність нанокарбонових сполукАнотація
У статті наведено перелік деяких різновидів алотропних модифікацій вуглецю, проаналізовано їх характеристики і властивості. Узагальнено відо- мості про раціональне використання нанокарбонових структур у науці й техніці. Викладено історію їх відкриття і перспективні шляхи подальшого розвитку. Особливу увагу приділено біомедичному застосуванню нанокарбонових сполук та обґрунтовано необхідність евалюації їх токсичного впливу на живі системи.
Посилання
Chekman I.S., Ulberg Z.R., Malanchuk V.O. Nanoscience, Nanobiology, Nanopharmacy. (Kyiv, Poligraf+, 2012). [in Ukrainian].
Nebogatikova N.A., Antonova I.V., Prinz V.Ya., Volodin V.A., Zatsepin D.A., Kurmaev E.Z., Zhidkov I.S., Cholakh S.O. Nanotechnologies in Russia. 2014. 9(1–2): 51–59. http://doi.org/10.1134/S1995078014010108
Shpak A.P., Chekhun V.F. (eds.). Nanomaterials and Nanocomposites in Medicine, Biology, Ecology. (Kyiv: Naukova dumka, 2011). [in Russian].
Chekman I.S., Malanchuk V.O, Rybachuk A.V. Basic Nanomedicine. (Kyiv: Logos, 2011). [in Ukrainian].
Chesnokov V.V., Buyanov R.A. Membrany. 2005. 4: 75–79 [in Russian].
Lee J.H., Loya P.E., Lou J., Thomas E.L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014. 346(6213): 1092–96. http://doi.org/10.1126/science.1258544
Novoselov K.S., Falko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012. 490(192): 192–200. http://doi.org/10.1038/nature11458
Nair R.R., Ren W., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S., Katsnelson M.I., Cheng H.M., Strupinski W., Bulusheva L.G., Okotrub A.V., Grigorieva I.V., Grigorenko A.N., Novoselov K.S., Geim A.K. Fluorographene: A two-dimensional counterpart of teflon. Small. 2010. 6(24): 2877–84. http://doi.org/10.1002/smll.201001555
Bendjemil B., Lankar A., Messadi D., Vrel D. Pharmacological molecule based on nanocarbon container encapsulated ferromagnet by combustion synthesis for cancer therapy. Univ. J. Chem. 2014. 2(3): 30–39.
Chen S., Zhu J.W., Wang X. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010. 114: 11829–34. http://doi.org/10.1021/jp1048474
Antonova I.V., Mutilin S.V., Seleznev V.A., Soots R.A., Volodin V.A., Prinz V.Y. Extremely high response of electrostatically exfoliated few layer graphene to ammonia adsorption. Nanotechnology. 2011. 22(28): 285502. http://doi.org/10.1088/0957-4484/22/28/285502
Baby T.T., Aravind S.S.J., Arockiadoss T., Rakhi R.B., Ramaprabhu S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B. 2010. 145: 71–77. http://doi.org/10.1016/j.snb.2009.11.022
Cheng S.-H., Zou K., Okino F., Gutierrez H.R., Gupta A., Shen N., Eklund P.C., Sofo J.O., Zhu J. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. J. Phys. Rev. B. 2010. 81: 205435. http://doi.org/10.1103/PhysRevB.81.205435
Tyagi M.G., Albert A.P., Tyagi V., Hema R. Graphene nanomaterials and applications in bio-medical sciences. World J. Pharm. Pharm. Sci. 2013. 3(1): 339–45.
Li D., Muller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008. 3: 101–105. http://doi.org/10.1038/nnano.2007.451
Chng E.L.K., Pumera M. Toxicity of graphene related materials and transition metal dichalcogenides. RSC Advances. 2015. 5(4): 3074–80. http://doi.org/10.1039/C4RA12624F
Saxena M., Sarkar S. Involuntary graphene intake with food and medicine. The Royal Society of Chemistry. 2014. 4: 30162–67. http://doi.org/10.1039/c4ra04022h
Saxena M., Maitya S., Sarkar S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Advances. 2014. 4(75): 39948–54. http://doi.org/10.1039/C4RA06535B
Chekman I.S. Nanopharmacology. (Kyiv: Zadruga, 2011). [in Ukrainian].
Donaldson K., Aitken R., Tran L. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 2006. 92(1): 5–22. http://doi.org/10.1093/toxsci/kfj130
Guldi D.M., Prato M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000. 33(10): 695–703. http://doi.org/10.1021/ar990144m
Zhai H.J., Zhao Y.F., Li W.L., Chen Q., Bai H., Hu H.-S., Piazza Z.A., Tian W.-J., Lu H.-G., Wu Y.-B., Mu Y.-W., Wei G.-F., Liu Z.-P., Li J., Li S.-D., Wang L.-S. Observation of an all-boron fullerene. Nature Chemistry. 2014. 6: 727–31. http://doi.org/10.1038/nchem.1999
Satoh M., Takayanagi I. Pharmacological studies on fullerene [C60], a novel carbon allotrope and its derivatives. J. Pharmacol. Sci. 2006. 100(5): 513–18. http://doi.org/10.1254/jphs.CPJ06002X
Nakamura F., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 2003. 3(11): 807–15. http://doi.org/10.1021/ar030027y
Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005. 5(12): 2578–85. http://doi.org/10.1021/nl051866b
Manzetti S., Behzadi H., Andersen O., van der Spoe D. Fullerenes toxicity and electronic properties. Environ. Chem. Lett. 2013. 11: 105–18. http://doi.org/10.1007/s10311-012-0387-x
Simate G.S., Yah C.S. The use of carbon nanotubes in medical applications – is it a success story? Occup. Med. Health. 2014. 2(1): 146–47.
Lacerda L., Bianco A., Prato M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006. 58(14): 1460–70. http://doi.org/10.1016/j.addr.2006.09.015
Bendjemil B. Electronic and optical properties of the express purified SWCNTs produced by HiPCO process. Int. J. Nanoelectr. Mater. Sci. 2009. 2: 173–82.
Banerjee S., Khan M.G., Wong S.S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003. 9(9): 1898–908. http://doi.org/10.1002/chem.200204618
Kam N.W., Liu Z., Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005. 127: 12492–93. http://doi.org/10.1021/ja053962k
Hillebrenner H., Buyukserin F., Stewart J.D., Martin C.R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine. 2006. 1(1): 39–50. http://doi.org/10.2217/17435889.1.1.39
Jain K.K. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 2008. 17(2): 89–101. http://doi.org/10.1159/000112961
Pastorin G., Kostarelos K., Prato M., Bianco A. Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J. Biomed. Nanotechnol. 2005. 1: 1–10. http://doi.org/10.1166/jbn.2005.017
Charlier J.C., Blasé X., Roche S. Electronic and transport properties of nanotubes. Rev. Modern Phys. 2007. 79(2): 677–732. http://doi.org/10.1103/RevModPhys.79.677
Qiang Y., Antony J., Sharma A., Nutting J., Sikes D., Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res. 2006. 8: 489–96. http://doi.org/10.1007/s11051-005-9011-3
Dąbrowska A., Huczko A., Soszyński M., Bendjemil B., Micciulla F., Sacco I., Coderoni L., Bellucci S. Ultra-fast efficient synthesis of one-dimensional nanostructures. Phys. Status Solidi B. 2011. 248(11): 2704–07. http://doi.org/10.1002/pssb.201100054
Wen W., Wu J. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Advances. 2014. 4(101): 58090–100. http://doi.org/10.1039/C4RA10145F
Chekhun V., Gorobets S., Gorobets O., Demyanenko I. Magnetic nanostructures in neoplasm cells. Herald of the National Academy of Sciences of Ukraine. 2011. 11: 13–20 [in Ukrainian].
Chen S., Li Y., Guo C., Wang J., Ma J., Liang X., Yang L.R,. Liu H.Z. Temperature-Responsive Magnetite / PEO–PPO–PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir. 2007. 23: 12669–76. http://doi.org/10.1021/la702049d
Shin T.H., Choi Y., Kim S., Cheon J. Recent advances in magnetic nanoparticles-based multi-modal imaging. Chem. Soc. Rev. 2015. 10: 315–56. http://doi.org/10.1039/c4cs00345d
Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomedicine. 2011. 6: 2963–79.
Al Faraj A., Shaik A.P., Shaik A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomedicine. 2015. 10: 157–68.
Drake P., Cho H.J., Shih P.S. Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 2007. 17: 4914–18. http://doi.org/10.1039/b711962c
Abaeva L.F., Shumskiy V.I., Petritskaya E.N. Almanakh klinicheskoy meditsiny (Medical Almanac). 2010. 22: 10 [in Russian].
Latyshevskaya N.I., Strekalova A.S. Vestnik. Volgogradskogo Universiteta. Ser. 3. 2011. 3(1): 224 [in Russian].
Karkishchenko N.N. Biomeditsina (Biomedicine). 2009. 1(1): 5 [in Russian].
Rybalkin S.P., Mikhina L.V., Onatskiy N.M. Prikladnaya toksikologiya. 2013. 4(1): 32 [in Russian].
Gusev A.A., Rodayev V.V., Vasyukova I.A. Vestnik Tambovskogo Universiteta. 2013. 18(1): 299 [in Russian].
Ziganshin A.U., Ziganshina L.E. Kazanskiy meditsinskiy zhurnal. 2008. 89(1): 1 [in Russian].
Fatkhutdinova L.M., Zalyalov R.R., Oslopov V.N. Kazanskiy meditsinskiy zhurnal. 2009. 90(4): 578 [in Russian].
Velichkovskiy B.T. Bull. VSNC SO RAMN. 2009. 4: 72 [in Russian].
Khaliullin T.O., Kisin Ye.R., Zalyalov R.R. Toksikologicheskiy vestnik. 2013. 4: 17 [in Russian].
Galano A. Carbon nanotubes: promising agents against free radicals. Nanoscale. 2010. 2: 373–80. http://doi.org/10.1039/b9nr00364a
Erdely A., Dahm M., Chen B.T. et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Particle and Fibre Toxicology. 2013. 10: 53. http://doi.org/10.1186/1743-8977-10-53