Упорядкована адсорбція органічних молекул на неорганічних наночастинках
DOI:
https://doi.org/10.15407/visn2015.06.034Ключові слова:
наночастинка, барвник, адсорбція, гібридні органіко-неорганічні комплексиАнотація
Розглянуто сучасний стан і перспективи створення новітніх наноконтейнерних систем доставки лікарських засобів. Наведено результати власних досліджень авторів з використання неорганічних нанокристалів ортованадатів ReVO4:Eu3+ (Re = Y, Gd, La) з різним форм-фактором як нанорозмірного носія активної органічної речовини.
Посилання
Brayden D.J. Controlled release technologies for drug delivery. Drug Discovery Today. 2003. 8(21): 976–78. http://doi.org/10.1016/S1359-6446(03)02874-5
Parveen S., Mishra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012. 8(2): 147–66. http://doi.org/10.1016/j.nano.2011.05.016
Hunziker P. Nanomedicine: shaping the future of medicine. Eur. J. Nanomedicine. 2009. 2(1):4. http://doi.org/10.1515/EJNM.2009.2.1.4
Hunziker P. Nanomedicine – the challenge of complexity. Eur. J. Nanomedicine. 2009. 2(2): 3–5. http://doi.org/10.1515/EJNM.2009.2.2.3
Soloviev M. Nanobiotechnology today: focus on nanoparticles medicine. 2007. J. Nanobiotechnol. 5: 11. http://doi.org/10.1186/1477-3155-5-11
Salata O.V. Applications of nanoparticles in biology and medicine. 2004. J. Nanobiotechnol. 2: 3. http://doi.org/10.1186/1477-3155-2-3
Torchilin V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007. 9(2): E128–47. http://doi.org/10.1208/aapsj0902015
Grossman J.H., McNeil S.E. Nanotechnology in cancer medicine. Physics Today. 2012. 65: 38–42. http://doi.org/10.1063/PT.3.1678
Nichols J.W., Bae Y.H. Odyssey of cancer nanoparticles: from injection site to site of action. Nano Today. 2012. 7(6): 606–18. http://doi.org/10.1016/j.nantod.2012.10.010
Bamrungsap S., Zhao Z., Chen T. Wang L., Li C., Fu T., Tan W. Nanotechnology in therapeutics: focus on nanoparticles as drug delivery system. Nanomedicine. 2012. 7(8): 1253–71. http://doi.org/10.2217/nnm.12.87
Freitas A. Nanotechnology, nanomedicine and nanosurgery. Int. J. Surgery. 2005. 3(4): 242–46. http://doi.org/10.1016/j.ijsu.2005.10.007
Liu Y., Niu T.-S., Zhang L., Yang J.-Sh. Review on nano-drugs. Nat. Sci. 2010. 2(1): 41–48. http://doi.org/10.4236/ns.2010.21006
Torchilin V.P. Nanoparticles as Drug Carriers (London, Imperial College Press, 2006).
Petros R., DeSimone J.M. Strategies in design of nanoparticles for therapeutic applications. Nat. Rev. Drug Disc. 2010. 9(8): 615–27. http://doi.org/10.1038/nrd2591
Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug. Deliv. Rev. 2010. 62(11): 1064–79. http://doi.org/10.1016/j.addr.2010.07.009
Klochkov V., Kavok N., Grygorova G., Sedyh O., Malyukin Yu. Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Mater. Sci. Eng. C. 2013. 33(5): 2708–12. http://doi.org/10.1016/j.msec.2013.02.046
Klochkov V.K., Masalov A.A., Kavok N.S., Malyukin Yu.V., Vyagin O.G. Colloidal synthesis and properties of lanthanide orthophosphate nanophosphors. Funct. Mater. 2009. 16(4): 466–69.
Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. Characteristics of nLnVO4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectr. 2012. 79(5): 726–30. http://doi.org/10.1007/s10812-012-9662-7
Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A. 2012. 409: 176–82. http://doi.org/10.1016/j.colsurfa.2012.06.019
Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-l. Proc. Natl. Acad. Sci. USA. 1991. 88(9): 3671–75. http://doi.org/10.1073/pnas.88.9.3671
Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess DΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997. 411, 77–82. http://doi.org/10.1016/S0014-5793(97)00669-8
Jones R.M., Lu L., Helgeson R., Bergstedt T.S., McBranch D.W.,Whitten D.G. Building highly sensitive dye assemblies for biosensing from molecular building blocks. Proc. Natl. Acad. Sci. USA. 2001. 98(26), 14769–72. http://doi.org/10.1073/pnas.251555298
Legrand O., Perrot J.-Y., Simonin G., Baudard M., Marie J.P. JC-1: a very sensitive fluorescent probe to test Pgp activity in adult acute myeloid leukemia. Blood. 2001. 97(2), 502–08. http://doi.org/10.1182/blood.V97.2.502
Kasha M. Molecular excitons in small aggregates. In: Spectroscopy of the excited state (NY, Premium Press, 1976). http://doi.org/10.1007/978-1-4684-2793-6_12
McRae E.G., Kasha M. Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys. 1958. 28: 721–22. http://doi.org/10.1063/1.1744225
Kasha M., Rawls H.R., El-Bayoumi M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965. 11: 371–92. http://doi.org/10.1351/pac196511030371
Czikkely V., Forsterling H.D., Kuhn H. Extended dipole model for aggregates of dye molecules.Chem. Phys. Lett. 1970. 6: 207–10. http://doi.org/10.1016/0009-2614(70)80220-2
Hassanzader A., Zeini-Isfahani A., Habibi M.H. Molecular exciton theory calculation based on experimental results for Solophenyl red 3BL azo dye–surfactants interactions. Spectrochimica Acta A. 2006. 64: 464–76. http://doi.org/10.1016/j.saa.2005.07.077
Tatikolov A.S. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. Photobiol. C. 2012. 13(1): 55–90. http://doi.org/10.1016/j.jphotochemrev.2011.11.001
Guralchuk G.Ya., Sorokin A.V., Katrunov I.K., Yefimova S.L., Lebedenko A.N., Malyukin Y.V., Yarmoluk S.M. Specificity of cyanine dye L-21 aggregation in solutions with nucleic acids. J. Fluorescence. 2007. 17(4): 370–76. http://doi.org/10.1007/s10895-007-0201-5
Sorokin A.V. Control of optical properties of polymethine dye J-aggregates using different additives. J. Appl. Spectr. 2009. 76(2): 234–39. http://doi.org/10.1007/s10812-009-9158-2