Механізми автофагії, або самопоїдання – постійної деградації клітинного матеріалу, без якої життя неможливе
Нобелівська премія з фізіології і медицини 2016 року
DOI:
https://doi.org/10.15407/visn2016.12.048Ключові слова:
автофагія, пексофагія, Atg-білки, неспецифічна (загальна) та селективні типи автофагії, Нобелівська премія, Й. ОсуміАнотація
Лауреатом Нобелівської премії в галузі фізіології і медицини 2016 р. став професор Токійського технологічного інституту Йосінорі Осумі (Yoshinori Ohsumi) з формулюванням «за відкриття механізмів автофагії». Він з’ясував основні етапи цього процесу та ідентифікував гени, що беруть участь на окремих його етапах. Виявлено чинники середовища, що регулюють автофагію. Крім неспецифічної (загальної) автофагії, ідентифіковано селективні процеси деградації ендоплазматичного ретикулуму, рибосом, а також певних органел (мітохондрій, пероксисом, ліпідних гранул, ядра). У лабораторії автора огляду відкрито кілька нових генів, залучених в автофагійну деградацію пероксисом (пексофагію). В огляді розглянуто також практичне значення вивчення механізмів автофагії для медицини і біотехнології.
Посилання
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 2005. 6(1): 79.https://doi.org/10.1038/nrm1552
Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets. 2011. 11(3): 239.https://doi.org/10.2174/156800911794519752
Accardi F., Toscani D., Bolzoni M., Dalla Palma B., Aversa F., Giuliani N. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling. Biomed. Res. Int. 2015. 2015:172458.
Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993. 333(1–2): 169.https://doi.org/10.1016/0014-5793(93)80398-E
Thumm M., Egner R., Koch B., Schlumpberger M., Straub M., Veenhuis M., Wolf D.H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994. 349(2): 275.https://doi.org/10.1016/0014-5793(94)00672-5
Titorenko V.I., Keizer I., Harder W., Veenhuis M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J. Bacteriol. 1995. 177(2): 357.https://doi.org/10.1128/jb.177.2.357-363.1995
Kulachkovsky A.R., Moroz O.M., Sibirny A.A. Impairment of peroxisome degradation in Pichia methanolica mutants defective in acetyl-CoA synthetase or isocitrate lyase. Yeast. 1997. 13(11): 1043.https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1043::AID-YEA161>3.0.CO;2-E
Klionsky D.J., Cregg J.M., Dunn W.A. Jr., Emr S.D., Sakai Y., Sandoval I.V., Sibirny A., Subramani S., Thumm M., Veenhuis M., Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev. Cell. 2003. 5(4): 539.https://doi.org/10.1016/S1534-5807(03)00296-X
Klionsky D.J., Cueva R., Yaver D.S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 1992. 119(2): 287.https://doi.org/10.1083/jcb.119.2.287
Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 1992. 119(2): 301.https://doi.org/10.1083/jcb.119.2.301
Qu X., Zou Z., Sun Q., Luby-Phelps K., Cheng P., Hogan R.N., Gilpin C., Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007. 128(5): 931.https://doi.org/10.1016/j.cell.2006.12.044
Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat. Rev. Cancer. 2007. 7(12): 961.https://doi.org/10.1038/nrc2254
Sibirny A.A. Mechanisms of autophagy and pexophagy in yeasts. Biochemistry. 2011. 76: 1279.https://doi.org/10.1134/s0006297911120017
Bassham D.C., Laporte M., Marty F., Moriyasu Y., Ohsumi Y., Olsen L.J., Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy. 2006. 2(1): 2.https://doi.org/10.4161/auto.2092
Kang C., You Y.J., Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007. 21(17): 2161.https://doi.org/10.1101/gad.1573107
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008. 132(1): 27.https://doi.org/10.1016/j.cell.2007.12.018
Kiel J.A. Autophagy in unicellular eukaryotes. Philos. Trans. R. Soc. B. 2010. 365: 819.https://doi.org/10.1098/rstb.2009.0237
Manjithaya R., Nazarko T.Y., Farre J.C., Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 2010. 584(7): 1367.https://doi.org/10.1016/j.febslet.2010.01.019
Sibirny A.A. Pexophagy sensing and signaling in the methylotrophic yeasts. In: Brocard C., Hartig A. (eds). Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. (Berlin: Springer, 2014). P. 507–527.https://doi.org/10.1007/978-3-7091-1788-0_23
Till A., Lakhani R., Burnett S.F., Subramani S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012. 2012: 1.
Suzuki K., Akioka M., Kondo-Kakuta C., Yamamoto H., Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 2013. 126(11): 2534.https://doi.org/10.1242/jcs.122960
Suzuki K., Nakamura S., Morimoto M., Fujii K., Noda N.N., Inagaki F., Ohsumi Y. Proteomic profiling of autophagosome cargo in Saccharomyces cerevisiae. PLoS One. 2014. 9(3): e91651.https://doi.org/10.1371/journal.pone.0091651
Oku M., Sakai Y. Pexophagy in yeasts. Biochim. Biophys. Acta. 2016. 1863(5): 992.https://doi.org/10.1016/j.bbamcr.2015.09.023
Aksam E.B., Koek A., Kiel J.A., Jourdan S., Veenhuis M., van der Klei I.J. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy. 2007. 3(2): 96.https://doi.org/10.4161/auto.3534
Schmelzle T., Hall M.N. TOR, a central controller of cell growth. Cell. 2000. 103(2): 253.https://doi.org/10.1016/S0092-8674(00)00117-3
Cebollero E., Reggiori F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2009. 1793(9): 1413.https://doi.org/10.1016/j.bbamcr.2009.01.008
Kabeya Y., Kamada Y., Baba M., Takikawa H., Sasaki M., Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell. 2005. 16(5): 2544.https://doi.org/10.1091/mbc.E04-08-0669
Suzuki K., Kamada Y., Ohsumi Y. Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev. Cell. 2002. 3(6): 815.https://doi.org/10.1016/S1534-5807(02)00359-3
Kihara A., Noda T., Ishihara N., Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 2001. 152(3): 519.https://doi.org/10.1083/jcb.152.3.519
Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001. 2(3): 211.https://doi.org/10.1038/35056522
Hanada T., Noda N.N., Satomi Y., Ichimura Y., Fujioka Y., Takao T., Inagaki F., Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007. 282(52): 37298.https://doi.org/10.1074/jbc.C700195200
Reggiori F., Tucker K.A., Stromhaug P.E., Klionsky D.J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell. 2004. 6(1): 79.https://doi.org/10.1016/S1534-5807(03)00402-7
Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 2010. 26: 115.https://doi.org/10.1146/annurev-cellbio-100109-104131
Epple U.D., Eskelinen E.L., Thumm M. Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function? J. Biol. Chem. 2003. 278(10): 7810.https://doi.org/10.1074/jbc.M209309200
Polupanov A.S., Nazarko V.Y., Sibirny A.A. CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol. Int. 2011. 35: 311.https://doi.org/10.1042/CBI20100547
He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009. 43: 67.https://doi.org/10.1146/annurev-genet-102808-114910
Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012. 22(8): 407.https://doi.org/10.1016/j.tcb.2012.05.006
Noda T., Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 1998. 273(7): 3963.https://doi.org/10.1074/jbc.273.7.3963
Yorimitsu T., He C., Wang K., Klionsky D.J. Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy. 2009. 5(5): 616.https://doi.org/10.4161/auto.5.5.8091
Schmelzle T., Beck T., Martin D.E., Hall M.N. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell Biol. 2004. 24(1): 338.https://doi.org/10.1128/MCB.24.1.338-351.2004
Yorimitsu T., Zaman S., Broach J.R., Klionsky D.J. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell. 2007. 18(10): 4180.https://doi.org/10.1091/mbc.E07-05-0485
Mammucari C., Milan G., Romanello V., Masiero E., Rudolf R., Del Piccolo P., Burden S.J., Di Lisi R., Sandri C., Zhao J., Goldberg A.L., Schiaffino S., Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007. 6(6): 458.https://doi.org/10.1016/j.cmet.2007.11.001
Natarajan K., Meyer M.R., Jackson B.M., Slade D., Roberts C., Hinnebusch A.G., Marton M.J. Transcriptional profling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell Biol. 2001. 21(13): 4347.https://doi.org/10.1128/MCB.21.13.4347-4368.2001
Kraft C., Reggiori F., Peter M. Selective types of autophagy in yeast. Biochim. Biophys. Acta. 2009. 1793(9): 1404.https://doi.org/10.1016/j.bbamcr.2009.02.006
Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012. 2012: 282041.
Rambold A.S., Lippincott-Schwartz J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle. 2011. 10(23): 4032.https://doi.org/10.4161/cc.10.23.18384
Tolkovsky A.M. Mitophagy. Biochim. Biophys. Acta. 2009. 1793(9): 1508.https://doi.org/10.1016/j.bbamcr.2009.03.002
Kanki T., Klionsky D.J. Atg32 is a tag for mitochondria degradation in yeast. Autophagy. 2009. 5(8): 1201.https://doi.org/10.4161/auto.5.8.9747
Hamasaki M., Noda T., Baba M., Ohsumi Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic. 2005. 6(1): 56.https://doi.org/10.1111/j.1600-0854.2004.00245.x
Kraft C., Deplazes A., Sohrmann M., Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 2008. 10(5): 602.https://doi.org/10.1038/ncb1723
Baxter B.K., Abeliovich H., Zhang X., Stirling A.G., Burlingame A.L., Goldfarb D.S. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. J. Biol. Chem. 2005. 280(47): 39067.https://doi.org/10.1074/jbc.M508064200
Maeda Y., Oku M., Sakai Y. A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis. Autophagy. 2015. 11(8): 1247.https://doi.org/10.1080/15548627.2015.1056969
Krick R., Muehe Y., Prick T., Bremer S., Schlotterhose P., Eskelinen E.L., Millen J., Goldfarb D., Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell. 2008. 19(10): 4492.https://doi.org/10.1091/mbc.E08-04-0363
Roberts P., Moshitch-Moshkovitz S., Kvam E., O’Toole E., Winey M., Goldfarb D.S. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell. 2003. 14(1): 129.https://doi.org/10.1091/mbc.E02-08-0483
Sibirny A.A. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res. 2016. 16(4): fow038.https://doi.org/10.1093/femsyr/fow038
Russmayer H. et al. Systems-level organization of yeast methylotrophic lifestyle. BMC Biol. 2015. 13: 80.https://doi.org/10.1186/s12915-015-0186-5
Veenhuis M., Van Dijken J.P., Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Microb. Physiol. 1983. 24: 1.https://doi.org/10.1016/S0065-2911(08)60384-7
Dunn W.A. Jr., Cregg J.M., Kiel J.A., van der Klei I.J., Oku M., Sakai Y., Sibirny A.A., Stasyk O.V., Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy. 2005. 1(2): 75.https://doi.org/10.4161/auto.1.2.1737
Mukaiyama H., Baba M., Osumi M., Aoyagi S., Kato N., Ohsumi Y., Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol. Biol. Cell. 2004. 15(1): 58.https://doi.org/10.1091/mbc.E03-05-0340
Farre J.C., Manjithaya R., Mathewson R.D., Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 2008. 14(3): 365.https://doi.org/10.1016/j.devcel.2007.12.011
Nazarko T.Y., Farre J.C., Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell. 2009. 20(17): 3828.https://doi.org/10.1091/mbc.E09-03-0221
Stasyk O.V., Nazarko T.Y., Stasyk O.G., Krasovska O.S., Warnecke D., Nicaud J.M., Cregg J.M., Sibirny A.A. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol. Int. 2003. 27(11): 947.https://doi.org/10.1016/j.cellbi.2003.08.004
Stasyk O.G., Maidan M.M., Stasyk O.V., Van Dijck P., Thevelein J.M., Sibirny A.A. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot. Cell. 2008. 7(4): 735.https://doi.org/10.1128/EC.00028-08
Nazarko V.Y., Nazarko T.Y., Farre J.C., Stasyk O.V., Warnecke D., Ulaszewski S., Cregg J.M., Sibirny A.A., Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy. 2011. 7(4): 375.https://doi.org/10.4161/auto.7.4.14369
Ano Y., Hattori T., Oku M., Mukaiyama H., Baba M., Ohsumi Y., Kato N., Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol. Biol. Cell. 2005. 16(2): 446.https://doi.org/10.1091/mbc.E04-09-0842
Monastyrska I., Kiel J.A., Krikken A.M., Komduur J.A., Veenhuis M., van der Klei I.J. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy. 2005. 1(2): 92.https://doi.org/10.4161/auto.1.2.1832
Sakai Y., Oku M., van der Klei I.J., Kiel J.A. Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta. 2006. 1763(12): 1767.https://doi.org/10.1016/j.bbamcr.2006.08.023
Oku M., Warnecke D., Noda T., Müller F., Heinz E., Mukaiyama H., Kato N., Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 2003. 22(13): 3231.https://doi.org/10.1093/emboj/cdg331
Nazarko T.Y., Farre J.C., Polupanov A.S., Sibirny A.A., Subramani S. Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy. 2007. 3(3): 263.https://doi.org/10.4161/auto.3907
Nazarko T.Y., Polupanov A.S., Manjithaya R.R. Subramani S., Sibirny A.A. The requirement of sterol glucoside for pexophagy in yeast is dependent of the species and nature of peroxisome inducers. Mol. Biol. Cell. 2007. 18(1): 106.https://doi.org/10.1091/mbc.E06-06-0554
Yamashita S., Oku M., Wasada Y., Ano Y., Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J. Cell Biol. 2006. 173(5): 709.https://doi.org/10.1083/jcb.200512142
Stasyk O.V., Stasyk O.G., Mathewson R.D., Farre J.C., Nazarko V.Y., Krasovska O.S., Subramani S., Cregg J.M., Sibirny A.A. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy. 2006. 2(1): 30.https://doi.org/10.4161/auto.2226
Burnett S.F., Farre J.C., Nazarko T.Y., Subramani S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 2015. 290(13): 8623.https://doi.org/10.1074/jbc.M114.619338
van Zutphen T., Veenhuis M., van der Klei I.J. Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy. 2008. 4(1): 63.https://doi.org/10.4161/auto.5076
Nazarko T.Y. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy. 2014. 10(7): 1348.https://doi.org/10.4161/auto.29073
Leao-Helder A.N., Krikken A.M., van der Klei I.J., Kiel J.A., Veenhuis M. Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 2003. 278(42): 40749.https://doi.org/10.1074/jbc.M304029200
Stasyk O.G., van Zutphen T., Ah Kang H., Stasyk O.V., Veenhuis M., Sibirny A.A. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. FEMS Yeast Res. 2007. 7(7): 1103.https://doi.org/10.1111/j.1567-1364.2007.00286.x
Nazarko V.Y., Futej K.O., Thevelein J.M., Sibirny A.A. Differences in glucose sensing and signaling for pexophagy between the baker’s yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy. 2008. 4(3): 381.https://doi.org/10.4161/auto.5634
Nazarko V.Y., Thevelein J.M., Sibirny A.A. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol. Int. 2008. 32(5): 502.https://doi.org/10.1016/j.cellbi.2007.11.001
Zhang P., Zhang W., Zhou X,. Bai P., Cregg J.M., Zhang Y. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl. Environ. Microbiol. 2010. 76(18): 6108.https://doi.org/10.1128/AEM.00607-10
Polupanov A.S., Nazarko V.Y., Sibirny A.A. Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int. J. Biochem. Cell Biol. 2012. 44(11): 1906.https://doi.org/10.1016/j.biocel.2012.07.017
Polupanov A.S., Sibirny A.A. Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biol. Int. 2014. 38(2): 172.https://doi.org/10.1002/cbin.10189
Stasyk O.V., Stasyk O.G., Komduur J., Veenhuis M., Cregg J.M., Sibirny A.A. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J. Biol. Chem. 2004. 279(9): 8116.https://doi.org/10.1074/jbc.M310960200
Yuan W., Tuttle D.L., Shi Y.J., Ralph G.S., Dunn W.A. Jr. Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell Sci. 1997. 110(16): 1935.
Herrero P., Flores L., de la Cera T., Moreno F. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Biochem. J. 1999. 343(2): 319.https://doi.org/10.1042/bj3430319
Liesen T., Hollenberg C.P., Heinisch J.J. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol. Microbiol. 1996. 21(3): 621.https://doi.org/10.1111/j.1365-2958.1996.tb02570.x
Saliola M., Getuli C., Mazzoni C., Fantozzi I., Falcone C. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res. 2007. 7(5): 693.https://doi.org/10.1111/j.1567-1364.2007.00250.x
Tolstorukov I.I., Efremov B.D., Benevolensky S.V., Titorenko V.I., Sibirny A.A. Mutants of methylotrophic yeast Pichia pinus defective in C2 metabolism. Yeast. 1989. 5(3): 179.https://doi.org/10.1002/yea.320050307
Sibirny A.A., Titorenko V.I., Efremov B.D., Tolstorukov I.I. Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast. 1987. 3(4): 233.https://doi.org/10.1002/yea.320030404
Sibirny A.A., Titorenko V.I., Teslyar G.E., Petrushko V.I., Kucher M.M. Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch. Microbiol. 1991. 156(6): 455.
Sibirny A.A. Genetic control of methanol and ethanol metabolism in the yeast Pichia pinus. In: Proc. 6th Int. Symp. on Genetics of Industrial Microorganisms. (Strasbourg: Soc. Franc. Microbiol., 1990). V. l. P. 545–554.
Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014. 24(1): 69.https://doi.org/10.1038/cr.2013.161
Lynch-Day M.A., Mao K., Wang K., Zhao M., Klionsky D.J. The role of autophagy in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012. 2(4): a009357.https://doi.org/10.1101/cshperspect.a009357
Wolfe D.M., Lee J.H., Kumar A., Lee S., Orenstein S.J., Nixon R.A. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 2013. 37(12): 1949.https://doi.org/10.1111/ejn.12169
Cortes C.J., La Spada A.R. The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov. Today. 2014. 19(7): 963.https://doi.org/10.1016/j.drudis.2014.02.014
White E. The role for autophagy in cancer. J. Clin. Invest. 2015. 125(1): 42.https://doi.org/10.1172/JCI73941
Gasparre G., Romeo G., Rugolo M., Porcelli A.M. Learning from oncocytic tumors: why choose inefficient mitochondria? Biochim. Biophys. Acta. 2011. 1807(6): 633.https://doi.org/10.1016/j.bbabio.2010.08.006
Cebollero E., Gonzalez R. Autophagy: from basic research to its application in food biotechnology. Biotechnol Adv. 2007. 25(4): 396.https://doi.org/10.1016/j.biotechadv.2007.03.004
Abeliovich H., Gonzalez R. Autophagy in food biotechnology. Autophagy. 2009. 5(7): 925.https://doi.org/10.4161/auto.5.7.9213
Kurylenko O., Semkiv M., Ruchala J., Hryniv O., Kshanovska B., Abbas C., Dmytruk K., Sibirny A. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast. Acta Biochim. Pol. 2016. 63: 31.https://doi.org/10.18388/abp.2015_1156