Як клітина транспортує синтезовані речовини, або чи справді не можна змінити місце і час зустрічі «внутрішньоклітинного вантажу»
DOI:
https://doi.org/10.15407/visn2014.01.080Ключові слова:
везикулярний трафік, Нобелівська премія, Дж. Ротман, Р. Шекман, Т. ЗюдгофАнотація
Лауреатами Нобелівської премії в галузі фізіології і медицини 2013 року стали американці Дж. Ротман і Р. Шекман та німець Т. Зюдгоф з формулюванням Нобелівського комітету «за фундаментальні відкриття механізму регулювання везикулярного трафіку – основної транспортної системи клітин».
Посилання
Press Release Nobel Committee. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/press.html.
Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980. 21(1): 205–15. http://doi.org/10.1016/0092-8674(80)90128-2
Block M.R., Glick B.S., Wilcox C.A. et al. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. PNAS. 1988. 85(21): 7852–56.http://doi.org/10.1073/pnas.85.21.7852
Weidman P.J., Melançon P., Block M.R., Rothman J.E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell. Biol. 1989. 108(5): 1589–96. http://doi.org/10.1083/jcb.108.5.1589
Oyler G.A., Higgins G.A., Hart R.A., Battenberg E., Billingsley M., Bloom F.E., Wilson M.C. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol. 1989. 109(6): 3039–52. http://doi.org/10.1083/jcb.109.6.3039
Inoue A., Obata K., Akagawa K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1 (syntaxin 1). J. Biol. Chem. 1992. 267(15): 10613–19.
Trimble W.S., Cowan D.M., Scheller R.H. VAMP-1: a synaptic vesicle-associated integral membrane protein. PNAS. 1988. 85(12): 4538–42. http://doi.org/10.1073/pnas.85.12.4538
Söllner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993. 362(6418): 318–24. http://doi.org/10.1038/362318a0
Gao Y., Zorman S., Gundersen G., Xi Z., Ma L., Sirinakis G., Rothman J.E., Zhang Y. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 2012. 337(6100): 1340–43. http://doi.org/10.1126/science.1224492
Brose N., Petrenko A.G., Südhof T.C., Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 1992. 256(5059): 1021–25. http://doi.org/10.1126/science.1589771
Hata Y., Slaughter C.A., Südhof T.C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature. 1993. 366(6453): 347–51. http://doi.org/10.1038/366347a0
McMahon H.T., Missler M., Li C., Südhof T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995. 83(1): 111–19. http://doi.org/10.1016/0092-8674(95)90239-2
Maximov A., Tang J., Yang X., Pang Z.P., Südhof T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science. 2009. 323(5913): 516–21. http://doi.org/10.1126/science.1166505
Wang Y., Okamoto M., Schmitz F., Hofmann K., Südhof T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature. 1997. 388(6642): 593–98. http://doi.org/10.1038/41580
Zhou P., Bacaj T., Yang X. et al. Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release. Neuron. 2013. 80(2): 470–83. http://doi.org/10.1016/j.neuron.2013.09.010
Südhof T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013. 80(3): 675–90. http:/doi.org/10.1016/j.neuron.2013.10.022
Zierath J.R., Lendahl U. Machinery regulating vesicle traffic, a major transport system in our cells. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/advanced-medicineprize2013.pdf.
Lashuel H.A, Hirling H. Rescuing defective vesicular trafficking protects against alpha-synuclein toxicity in cellular and animal models of Parkinson's disease. ACS Chem. Biol. 2006. 1(7): 420–24. http://doi.org/10.1021/cb600331e
Alter S.P., Lenzi G.M., Bernstein A.I., Miller G.W. Vesicular integrity in Parkinson's disease. Curr. Neurol. Neurosci. Rep. 2013. 13(7): 362. http://doi.org/10.1007/s11910-013-0362-3
Suzuki T., Araki Y., Yamamoto T., Nakaya T. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis. J. Biochem. 2006. 139(6): 949–55. http://doi.org/10.1093/jb/mvj121
Caviston J.P., Holzbaur E.L. Huntingtin as an essential integrator of intracellular vesicular trafficking // Trends Cell Biol. – 2009. – V. 19, N 4. – P. 147–155.
Krzewski K., Cullinane A.R. Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp. Cell. Res. 2013. 319(15): 2360–67. http://doi.org/10.1016/j.yexcr.2013.06.012
Ge J., Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol. 2011. 13(12): 1870–80. http://doi.org/10.1111/j.1462-5822.2011.01710.x
Rossetto O., de Bernard M., Pellizzari R., Vitale G., Caccin P., Schiavo G., Montecucco C. Bacterial toxins with intracellular protease activity. Clin. Chim. Acta. 2000. 291(2): 189–99. http://doi.org/10.1016/S0009-8981(99)00228-4
Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., De Camilli P., Südhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993. 365(6442): 160–63. http://doi.org/10.1038/365160a0